Tatort Plattengrenze Fokus Erdbeben (6)

10 grösste Erdbeben 2001-2011

#	Event, by date Magnitude		Notable Effects	Destruction		
1	Japan March, 2011	9.0	Land dropped; tsunami wave heights up to 24 meters traveled up to 10 km inland devastating coastal communities. This was a triple disaster due to earthquake, tsunami, & radiation leaks from earthquake-damaged nuclear power plants.	>10,000 killed; 17,000 reported missing; 125,000 buildings damaged; > 500,000 homeless		
2	Christchurch, New Zealand February, 2011	6.3	Extensive ground shaking by the shallow earthquake in area of high population density. Liquefacton caused upwelling of >200,000 tonnes of silt.	>180 killed; 80% of water & sewer system damaged		
3	Yushu, China April, 2010	6.9	At least 11 schoools destroyed in this sparsely populated region on the Tibetan Plateau. 12th century monastery and villages were severely damaged.	2,698 killed; 12,000 injured 85% of buildings (11 schools) destroyed		
4	Offshore Maule, Chile February, 2010	8.8	Shaking lasted 3 minutes and was felt in Peru, 2400 km away. Damage in Santiago. The earthquake generated a tsunami that devastated coastal communities.	521 killed 370,000 homes damaged		
5	Port-au-Prince, Haiti February, 2010	7.0	The damage from the quake was more severe than for other quakes of similar magnitude due to both the shallow depth of the earthquake and the poor quality of construction. 250,000 residences and 30,000 commercial buildings destroyed.	316,000 killed (May 1011, USAID adjusted figures to 46,000–85,000 killed.) 1,000,000 homeless		
6	Sumatra December, 2009	7.5	Large buildings fell in the cities near the epicenter; landslides buried villages. Note: This is not the M9.1 earthquake of 2004; see below.	1,115 killed 200,000 homes damaged		
7	L'Aquila, Abruzzo, Italy April, 2009	<mark>6.3</mark>	Villages in the valleys suffered greater damage than medieval mountain hill towns. L'Aquila was built on ancient lake sediments. The earthquke of 1703 destroyed the town of L'Aquila & killed 5,000 people. Felt in Rome, 60 km away.	308 killed; 1500 injured 3,000–11,000 buildings damaged 65,000 homeless		
8	Sichuan Province, China May, 2008	7.9	At least 7,000 school buildings in Sichuan Province collapsed due to shoddy construction. Earthquake occurred in a poorer region where buildings are "just built; not designed" with earthquakes in mind, though they are common.	69,000 killed; 5,000,000 homeless		
9	Chincha Alta, Peru August, 2007	8.0	The city of Pisco suffered 85% of the buildings destroyed. 148 deaths occurred when the cathedral collapsed in the city's main square.	519 killed; 85% buildings destroyed in Pisco & Chincha Alta. Many homeless		
10	Java, Indonesia May, 2006	6.3	The earthquake's shallow depth was a major factor, but the scale of damage was made worse by failure to meet safe building standards.	5,782 killed; 36,299 injured; 135,000 homes damaged. 1,500,000 homeless		
11	Pakistan October, 2005	7.6	Landslides and rockfalls damaged several main roads cutting off access to the region for several days. Several villages destroyed.	80,000 killed 32,000 buildings collapsed		
12	Sumatra December, 2004	9.1	One of the deadliest natural disasters in history due to earthquake & tsunami pair. Third largest earthquake in recorded history. Vertical displacement of \sim 20 m over \sim 500 km length of the fault caused tsunamis with heights up to 30 meters.	230,000 killed in 12 countries; 1,300,000 affected; Widespread water & food shortages		
13	Southeastern Iran December, 2003	6.6	Caused by fault rupture on the Bam Fault. The effects of the earthquake were exacerbated by the use of mud brick as the standard construction medium.	26,000 killed, 30,000 injured, 85% of buildings destroyed in the Nahrin area; 100,000 homeless		
14	India January, 2001	7.7	Same site as the 1819 earthquake & proportionally the same number killed despite a seismic resistant building code. Liquefaction exacerbated shaking.	20,000 killed, 167,000 injured 600,000 homeless		

berühmte Erdbeben Subduktion

Chile 22. Mai 1960 M_W = 9.5

Chile 22. Mai 1960 M_W = 9.5

Map Version 1.1 Processed Sun Nov 9, 2008 09:23:34 AM MST

INSTRUMENTAL INTENSITY	E.	11-111	١V	V	VI	VII	VIII	IX	Xa
PEAK VEL (cm/s)	<0.1	0.1-1.1	1.1-3.4	3.4-8.1	8.1-16	16-31	31-60	60-116	>116
PEAK ACC.(%g)	<.17	.17-1.4	1.4-3.9	3.9-9.2	9.2-18	18-34	34-65	65-124	>124
DAMAGE	none	none	none	Very light	Light	Moderate	Moderate/Heavy	Heavy	Very Heavy
PERCEIVED	Notfell	Weak	Light	Moderate	Strong	Very strong	Severe	Violent	Extreme

Tsunami

berühmte Erdbeben Subduktion 7

2010 02 27 06:34:14 UTC 35.93S 72.78W Depth: 35 km, Magnitude: 8.8 Magnitude 7 and Greater Earthquakes Since 1900

Map Version 7 Processed Fri Mar 5, 2010 03:00:13 AM MST -- NOT REVIEWED BY HUMAN

PERCEIVED	Notfelt	Weak	Light	Moderate	Strong	Very strong	Severe	Violent	Extreme
POTENTIAL DAMAGE	none	none	none	Very light	Light	Moderate	Moderate/Heavy	Heavy	Very Heavy
PEAK ACC.(%g)	<.17	.17-1.4	1.4-3.9	3.9-9.2	9.2-18	18-34	34-65	65-124	>124
PEAK VEL.(om/s)	<0.1	0.1-1.1	1.1-3.4	3.4-8.1	8.1-16	16-31	31-60	60-116	>116
INSTRUMENTAL INTENSITY	E.	11-111	IV	V	VI	VII	VIII	IX.	Xe

PERCEIVED SHAKING	Notfelt	Weak	Light	Moderate	Strong	Very strong	Severe	Violent	Extreme
PO TENTIAL DA MAGE	none	none	none	Very light	Light	Moderate	Moderate/Heavy	Heavy	Very Heavy
PEAK ACC.(%g)	<.17	.17-1.4	1.4-3.9	3.9-9.2	9.2-18	18-34	34-65	65-124	>124
PEAK VEL (cm/s)	<0.1	0.1-1.1	1.1-3.4	3.4-8.1	8.1-16	16-31	31-60	60-116	>116
INSTRUMENTAL	E	11-111	IV	V	VI	VII	VIII	IX	X+

Chile 1960

M8.8 - Offshore Maule, Chile

Aftershock Map - Mainshock and 458 Aftershocks

Last Updated: 29 March 2010, 18:19:54 UTC

Legend

≊USGS

≥USGS

Chile Earthquake: Depth extent of faulting

Closest cities to fault that slipped is about 25 km:

Vergleich strikes-slip versus

Subduktion

ESTIMATED MODIFIED MERCALLI INTENSITY V 11-111 IV VI VII VIII X+ PERCEIVED SHAKING Very Strong Not felt Weak Moderate Strong Extreme Light Severe Violent Resistant V. Light V. Heavy none none none Light Moderate Moderate/Heavy Heavy Structures POTENTIAL DAMAGE Vulnerable Structures none none none Light Moderate Moderate/Heavy Heavy V. Heavy V. Heavy

Population & Shaking Intensity

Haiti

Chile

[Maps on approximately same scale]

≊USGS

2010 Chile & Haiti Earthquake Fault Facts

The Facts	Chile	Haiti		
Magnitude	8.8	7.0		
Maximum Estimated Shaking Intensity	~ VIII	~ IX		
Fault Size Area (km ²)	80,000 sq km	600 sq km		
Maximum Slip (meters)	12	5		
Average slip (meters)	7	2		
ave. slip x area	560,000	1,200		

560,000/1,200 ~= 500 times energy release

Tektonische, physikalische Ursachen

Namazu, ein riesiger Wels liegt im Schlamm und Kashima, ein Gott, hält ihn mit einem Stein fest. Wenn Kashima nicht aufpasst und den Griff lockert, bewegt sich Namazu - und die Erde bebt...

Stick - Slip - Modell

Seismik

seismische Wellen

P-Wellen: Kompression

S-Wellen: Scherung

seismische Wellen

K: bulk modulus

µ: shear modulus

Geschwindigkeit seismischer Wellen

	v _P (ms ⁻¹)	v _s (ms ⁻¹)
Luft	332	
Wasser	1400-1500	
Petroleum	1300-1400	
Beton	3600	2000
Granit	5500-5900	2800-3000
Basalt	6400	3200
Sandstein	1400-4300	700-2800
Kalkstein	5900-6100	2800-3000
Sand (ungesättigt)	200-1000	80-400
Sand (gesättigt)	800-2200	320-880
Ton	1000-2500	400-1000
Tillit (gesättigt)	1500-2500	600-1000

seismische Geschwindigkeiten

o- waves

Preliminary reference earth model

Seismische Refraktion

Trajektorien im Erdinnern

P - Wellen

S-Wellen

Ringförmiger Schatten

Kreisförmiger Schatten

Trajektorien von P- und S-Wellen

grün: direkt orange: reflektiert

Seismische Grenzflächen

seismische Diskontinuitäten

'Moho'

Andrija Mohorovičić (1857 - 1936)

1909 entdeckt Diskontinuität von ~6 kms⁻¹ auf ~8 kms⁻¹ zwischen Kruste und Mantel

Projection: Lambert Azimuthal Equal Area; Centre: 041.007481.001; Region : W/E/N/E = 3501/281/521341; Ellipscide wgs-84

seismische Diskontinuitäten

seismische Diskontinuitäten

seismische Tomographie

http://ansatte.uit.no/kku000/webgeology/ (Kåre Kullerud) module: Mantle dynamics and plate tectonics

Temperature variations in the mantle

Seismic tomography

Konvektionsmodelle

C. Lagenstruktur im tiefen Mantel

Oszillationen

Oszillationen

berühmte Erdbeben Subduktion 3

Japan, 11. 3. 2011 Mw = 9.0

Japan was struck by a magnitude 9.0 earthquake off its northeastern coast Friday. This is one of the largest earthquakes that Japan has ever experienced.

In downtown Tokyo, large buildings shook violently and there is severe flooding due to a tsunami generated by the earthquake.

Part of houses swallowed by tsunami burn in Sendai, Miyagi Prefecture (state) after Japan was struck by a strong earthquake off its northeastern coast 2011.

New York Times

Magnitude 9.0 NEAR THE EAST COAST OF HONSHU, JAPAN Friday, March 11, 2011 at 05:46:23 UTC

Tsunami waves swept away houses and cars in northern Japan and pushed ships aground.

Teachable Moments

The tsunami waves traveled far inland, the wave of debris racing across the farmland, carrying boats and houses with it.

The tsunami, seen crashing into homes in Natori, Miyagi prefecture. *AP*

Houses were washed away by tsunami in Sendai, Miyagi Prefecture in eastern Japan, after Japan was struck by a magnitude 9.0 earthquake off the northeastern coast.

New York Times

InstructionMagnitude 9.0 NEAR THE EAST COAST OF HONSHU, JAPANTeachable MomentsFriday, March 11, 2011 at 05:46:23 UTC

This earthquake occurred 130 km (80 miles) east of Sendai, Honshu, Japan and 373 km (231 miles) northeast of Tokyo, Japan.

IRIS Teachable Moments Teachable Moments **Magnitude 9.0 NEAR THE EAST COAST OF HONSHU, JAPAN** Friday, March 11, 2011 at 05:46:23 UTC

Shaking intensity scales were developed to standardize the measurements and ease comparison of different earthquakes. The Modified-Mercalli Intensity scale

is a twelve-stage scale, numbered from I to XII. The lower numbers represent imperceptible shaking levels, XII represents total destruction. A value of IV indicates a level of shaking that is felt by most people.

Modified Mercalli Intensity								
x								
X								
VII								
VI								
VI								
V								
N								
II-III								
I								

Perceived Shaking Extreme Violent Severe Very Strong Strong Moderate Light Weak Not Felt

Image courtesy of the US Geological Survey

USGS Estimated shaking Intensity from M 9.0 Earthquake

Magnitude 9.0 NEAR THE EAST COAST OF HONSHU, JAPAN Friday, March 11, 2011 at 05:46:23 UTC

The USGS PAGER map shows the population exposed to different Modified Mercalli Intensity (MMI) levels. MMI describes the severity of an earthquake in terms of its effect on humans and structures and is a rough measure of the amount of shaking at a given location.

Overall, the population in this region resides in structures that are resistant to earthquake shaking.

The color coded contour lines outline regions of MMI intensity. The total population exposure to a given MMI value is obtained by summing the population between the contour lines. The estimated population exposure to each MMI Intensity is shown in the table below.

Image courtesy of the US Geological Survey

USGS PAGER Population Exposed to Earthquake Shaking

Estimated <u>Modified Mercalli</u> Intensity	I.	11-111	IV	v	VI	VII	VIII	IX	x
Est. Population Exposure	-*	*	*	7,071k*	19,695k*	29,969k*	2,144k	0	0
Perceived Shaking	Not Felt	Weak	Light	Moderate	Strong	Very Strong	Severe	Violent	Extreme

Globally, this is the 4th largest earthquake since 1900.

S Magnitude 9.0 NEAR THE EAST COAST OF HONSHU, JAPAN Friday, March 11, 2011 at 05:46:23 UTC

Earthquake and Historical Seismicity

This earthquake (gold star), plotted with regional seismicity since 1990, occurred at approximately the same location as the March 9, 2011 M 7.2 earthquake.

In a cluster, the earthquake with the largest magnitude is called the main shock; anything before it is a foreshock and anything after it is an aftershock. A main shock will be redefined as a foreshock if a subsequent event has a larger magnitude.

This earthquake redefines the M 7.2 earthquake as a foreshock, with this event replacing it as the main shock.

42 361 TOKY 146'

Instruction Magnitude 9.0 NEAR THE EAST COAST OF HONSHU, JAPAN Teachable Moments Magnitude 9.0 NEAR THE EAST COAST OF HONSHU, JAPAN

This earthquake was the result of thrust faulting along or near the convergent plate boundary where the Pacific Plate subducts beneath Japan.

This map also shows the rate and direction of motion of the Pacific Plate with respect to the Eurasian Plate near the Japan Trench. The rate of convergence at this plate boundary is about 83 mm/yr (8 cm/year). This is a fairly high convergence rate and this subduction zone is very seismically active.

IREAL MOMENTS Teachable Moments Teachable Moments Teachable Moments Teachable Moments

The map on the right shows historic earthquake activity near the epicenter (star) from 1990 to present.

As shown on the cross section, earthquakes are shallow (orange dots) at the Japan Trench and increase to 300 km depth (blue dots) towards the west as the Pacific Plate dives deeper beneath Japan.

Seismicity Cross Section across the subduction zone showing the relationship between color and earthquake depth.

Seismicity Cross Section

Images courtesy of the US Geological Survey

S Magnitude 9.0 NEAR THE EAST COAST OF HONSHU, JAPAN Friday, March 11, 2011 at 05:46:23 UTC

At the latitude of this earthquake, the Pacific plate moves approximately westwards with respect to the Eurasian plate at a velocity of 83 mm/yr. The Pacific plate thrusts underneath Japan at the Japan Trench, and dips to the west beneath Eurasia. The location, depth, and focal mechanism of the March 11 earthquake are consistent with the event having occurred as thrust faulting associated with subduction along this plate boundary.

Teachable Moments

Shaded areas show quadrants of the focal sphere in which the P-wave first-motions are away from the source, and unshaded areas show quadrants in which the P-wave first-motions are toward the source. The dots represent the axis of maximum compressional strain (in black, called the "P-axis") and the axis of maximum extensional strain (in white, called the "T-axis") resulting from the earthquake.

Image: Teachable Moments Magnitude 9.0 NEAR THE EAST COAST OF HONSHU, JAPAN Friday, March 11, 2011 at 05:46:23 UTC

Large earthquakes involve slip on a fault surface that is progressive in both space and time. This "map" of the slip on the fault surface of the M 9.0 Japan earthquake shows how fault displacement propagated outward from an initial point (or focus) about 24 km beneath the Earth's surface. The rupture extended over 500 km along the length of the fault, and from the Earth's surface to depths of over 50 km.

Image courtesy of the U.S. Geological Survey

Cross-section of slip distribution. The strike direction of the fault plane is indicated by the black arrow and the hypocenter location is denoted by the red star. The slip amplitude are showed in color and motion direction of the hanging wall relative to the footwall is indicated by black arrows. Contours show the rupture initiation time in seconds.

Although magnitude is still an important measure of the size of an earthquake, particularly for public consumption, seismic moment is a more physically meaningful measure of earthquake size. Seismic moment is proportional to the product of the slip on the fault and the area of the fault that slips.

This graph of the moment rate function describes the rate of moment release with time after earthquake origin.

The largest amounts of rupture occurred over 100 seconds but smaller displacements continued for another 75 seconds after the start of the earthquake.

S Magnitude 9.0 NEAR THE EAST COAST OF HONSHU, JAPAN Friday, March 11, 2011 at 05:46:23 UTC

The moment magnitude scale is designed to give an accurate characterization of the true size of an earthquake, but be tied to the original description of magnitude that was developed by Charles Richter. Moment magnitude accounts for earthquake size by looking at all the energy released.

Teachable Moments

It is striking that only 6 earthquakes over the last 106 years account for over half of the energy released during that time.

Instruction Magnitude 9.0 NEAR THE EAST COAST OF HONSHU, JAPAN Teachable Moments Friday, March 11, 2011 at 05:46:23 UTC

This earthquake was preceded by a series of large foreshocks over the previous two days, beginning on March 9th with an M 7.2 event approximately 40 km from the March 11 earthquake, and continuing with 3 earthquakes greater than M 6 on the same day.

The M 9.0 earthquake has been followed by frequent large aftershocks, which can do damage on their own especially to buildings that were compromised in the main shock.

The M 9.0 main shock (red star) is plotted with 14 aftershocks larger than magnitude 6.0 that occurred in the first 6 hours after the earthquake. This includes a magnitude 7.1.

IRIS Teachable Moments Teachable Moments Teachable Moments Friday, March 11, 2011 at 05:46:23 UTC

Shallow great earthquakes in subduction zones often cause tsunamis when they offset the ocean floor. This offset generates tsunami waves. This earthquake did produce a tsunami, which was measured on a nearby buoy and triggered the warning system.

Magnitude 9.0 NEAR THE EAST COAST OF HONSHU, JAPAN Friday, March 11, 2011 at 05:46:23 UTC

This tsunami propagation forecast model shows the forecast maximum tsunami wave height (in cm). Ocean floor bathymetry affects the wave height because a tsunami moves the seawater all the way to the floor of the ocean.

Teachable Moments

This led to a Pacific wide tsunami warning being issued.

S Magnitude 9.0 NEAR THE EAST COAST OF HONSHU, JAPAN Friday, March 11, 2011 at 05:46:23 UTC

Projected travel times for the arrival of the tsunami waves across the Pacific.

Teachable Moments

Nearby the earthquake there are only minutes to evacuate. However, in many other regions there is advance warning.

A tsunami map shows projected travel times for the Pacific Ocean. This map indicates forecasted times only, not that a wave traveling those distances has actually been observed.. NOAA

Herdflächenlösungen

Horizontaler / vertikaler slip

.statt einer Zusammenfassung...

Platten Plattengrenzen Subduktion Vor- Haupt- Nachbeben Lithosphäre Kruste-Mantel Überschiebung Abschiebung StrikeSlip

Tremor Seismische Wellen Seismograf Magnitude – Intensität Richter- Mercalliskala Tsunami Gefährdung seismic networks

