

Photographs of outcrops.

(a) Outcrop showing ductile shear zone, pocket knife for scale; note, uneven surface producing uneven lighting in spite of diffuse day light conditions;

(b) soil profile of rendzina (Image courtesy Christine Alewell); picture taken with flash; note central perspective and even illumination;

(c) snow profile; picture taken in transmitted light; scale is missing.

Photomacrography in the field.

(a) Glacially polished outcrop;

(b) detail of ductile shear zone;

(c) foliated granitic rock (light) with highly stretched enclaves (dark);

(d) fault rock, tip of pencil for scale (Image courtesy Holger Stünitz).

Note central perspective and diffuse lighting conditions.

b

XA Y A

Figure 2.3

Two dimensions ? (a) Polished surface of oolithic limestone; (b) acetate foil replica of surface shown in (a). Arrows point to identical sites.

Acquiring images with a flatbed scanner.

(a) Polished surface of oolithic limestone and acetate foil are scanned on a A4 scanner at its maximum resolution (600 ppi);

(b) enlarged details (see frames in (a)).

Acquiring images with a slide scanner.

Thin sections are scanned using special slide holders at high resolution (4000 ppi); white frames in (a) and (b) indicate enlarged details (c) and (d):

(a) and (c) consolidated fault rock, plane polarization;

(b) and (d) quartz mylonite, cross polarization.

Resolution of slide scanner.

- (a) Entire thin section of foliated granitoid rock in plane polarization;
- (b) entire thin section in cross polarization;
- (c) detail of (a), area in rectangle is shown enlarged in Figure 2.9;
- (d) detail of (b).

Light microscopy.

Thin section of quartzite shown in different modes:

(a) plain transmitted light;

(b) cross polarization;

(c) cross polarization and wave plate;

(d) circular polarization.

(9)

(10)

(11)

Figure 2.8

Köhler illumination.

Procedure: (1) observe cross hair in eye piece; (2) focus cross hair; (3) observe thin section; (4) bring image of thin section into same plane of focus as cross hair of eyepiece; (5) start with well focused image; (6) install appropriate condenser (with numerical aperture matching that of objective) and open condenser diaphragm completely; (7) close illumination diaphragm; (8) focus image of closed diaphragm by moving the condenser up and down; (9) center image of illumination diaphragm using condenser screws; (10) open illumination diaphragm until the rim of the opening barely disappears from the field of view; (11) stop down condenser.

Comparison between slide scanner and low magnification microscopy.

(a) Detail of scanned thin section of foliated granitoid rock (see Figure 2.6.c);

(b) same area taken with light microscope, ZEISS NEOFLUAR Epiplan 2.5x / 0.075, plane polarized condition, area in frame is shown at higher magnification in Figure 2.14.

Point spread function (PSF).

(a) lateral resolution in image plane (x-y plane) determined by radius of Airy disk;

(b) depth resolution determined by constant size (magnification) of Airy disk along the z-axis of the optical system;

longitudinal section, f = focal length, direction of optical axis.

Lateral resolution.

Resolved length, d, as function of wavelength, λ , for different microscope objectives; values of d at 550 nm wavelength are indicated.

b

Figure 2.12

Depth resolution.
Depth of field, d_{field}, as a function of numerical aperture is shown for 3 different wavelengths:
(a) logarithmic plot;
(b) linear plot.

d

Figure 2.13

Example of image sensor.

(a) Spectral sensitivity of CCD image sensor without filter;

(b) spectral sensitivity of CCD image sensor with Bayer filters for red, green and blue pixels;

(c) recording color through Bayer filter, typical width of pixel is 6 to 7 μ m, position of two green, one red and one blue filter in the even (0) and odd (1) columns and rows of the chip are indicated;

(d) rendition of color as three color channels (RGB) in color images and three fluorescent spots on the monitor.

objective	no. of pixels	true length [µm]	true size of pixel [µm]	resolved length [µm]
2x	205	500	2.44	4.47
5x	79	100	1.27	2.24
I0x	156	100	0.64	1.12
20x	155	50	0.32	0.67
50x	158	20	0.13	0.42

Table 2.1

True size represented by one pixel in image compared to resolved length of objective; values measured for Axiocam camera and ZEISS Axioplan microscope; note that the true pixels size is approximately one half of the resolved length.

Scanning electron microscopy.

(a) Micrograph of polished surface of foliated granitoid rock (Image courtesy Rüdiger Kilian), backscatter electron

contrast (BSE) showing different mineral phases: white = biotite, very light gray = K-feldspar, light gray = muscovite, gray = plagioclase, dark gray = quartz;

(b) same area taken with optical microscope, circular polarization (see Fig. 2.9b): here contrast is mainly due to orientation of crystals with respect to polarizers.

Transmission electron microscopy.

(a) Free dislocations in quartz, bright field contrast (Image courtesy John Fitz Gerald);

(b) Chlorite, lattice planes, high resolution image (Image courtesy Andreas Kronenberg).