

Figure 4.1

Subtracting images: detecting differences.
(a) SEM micrograph, re-sized using bicubic interpolation;
(b) SEM micrograph, re-sized using nearest neighbor interpolation;
(c) difference image (a) - (b), Grayscale result, histogram of difference image;
(d) difference image (a) - (b), Real result, histogram of difference image.

f

Figure 4.2
Combining images: hiding information in random noise.
Coding process:
(a) image I of random noise; (b) text written on image I; (c) image 2 of random noise (\neq image I); (d) XOR addition of (b) and (c), result = random noise.

Decoding process:
(e) same as (d) = secret message; (f) same as (c) = key; (g) XOR addition of (e) and (f); (h) subtraction: (e) - (f).

uadratic Subtraction

3 Point Compensation

XY Tilt Compensation

Rolling Disk r=100

Rolling Ball $r=100$

Remove Streaks $r=100$

${ }_{250}^{25}$ Rolling Disk r=100

${ }_{200}^{200}$ Rolling Ball $r=100$

Figure 4.3
Background correction for oblique lighting.
(a) Corrected images with T marking trace of profile, the profile is at the same position in each image;
(b) gray value profiles along T .

a original

3 Point Compensation

Rolling Disk r=100

Quadratic Subtraction

3 Point Compensation

Line-By-Line Linear

Rolling Disk $r=100$

Line-By-Line Quadratic

Quadratic Subtraction

Rolling Ball $r=100$

Remove Streaks $r=100$

Figure 4.4
Background correction for central lighting.
(a) Corrected images with T marking trace of profiles, the profile is at the same position in each image;
(b) gray value profiles along T .

wedge

central dome background

Figure 4.5
Background correction using model background.
Left: images with T marking trace of profiles; right: gray value profiles along T .
(a) A horizontal wedge is used to simulate oblique lighting from left;
(b) a central dome is used to simulate vignetting; a frame indicates the area that is used as the representative bright spot.

Figure 4.6
Preparing the background image.
(a) Original image, shown with a threshold and the Spectrum LUT;
(b) original background, shown with equalized histogram and the Spectrum LUT;
(c) enhanced background, shown with equalized histogram and the Spectrum LUT.

Figure 4.7
Background correction using true background images.
(a) Original background (Figure 4.6.b) is used;
(b) enhanced background (Figure 4.6.c) is used.

Three methods are used:
subtract: the background is subtracted;
divide: the original is divided by the background;
subtract calibrated: the linearized background is subtracted from the linearized original.
All images are shown with Spectrum LUT.

a

+	+	+	+
+	+	+	+
+	+	+	+
+	+	+	+

C

Figure 4.8
Re-sizing an image by nearest neighbor (NN) interpolation.
(a) magnified original image; one back-transformed pixel is highlighted (red); 4 neighboring pixels outlined in yellow;
(b) pixel grid; back-transformed pixel grid (red), same pixel as in (a) is highlighted;
(c) 4 neighbors of back-transformed pixel in original image (see frame in (a));
(d) result of magnification (1.2 times) of original (a) using NN interpolation
\mathbf{a}

+	+	+	+
+	+	+	+
+	+	+	+
+	+	+	+

b

C

Figure 4.9
Re-sizing an image by bilinear interpolation
(a) magnified original image; one back-transformed pixel is highlighted (red);
(b) pixel grid; back-transformed pixel grid (red), same pixel as in (a) is highlighted;
(c) 4 neighbors of back-transformed pixel in original image;
(d) linear interpolations between points I and 2,3 and 4 , and A and B;
(e) result of re-sizing of original (a) using bilinear interpolation.

$a^{\prime \prime}$	880.000
$g_{\sharp}{ }^{\prime \prime}$	830.609
$g^{\prime \prime}$	783.991
$f_{\sharp}{ }^{\prime \prime}$	739.989
$f^{\prime \prime}$	698.456
$\mathrm{e}^{\prime \prime}$	659.255
$\mathrm{~d}_{\sharp}{ }^{\prime \prime}$	622.254
$\mathrm{~d}^{\prime \prime}$	587.330
$\mathrm{c}_{\sharp}^{\prime \prime}$	554.365
$\mathrm{c}^{\prime \prime}$	523.25 I
b^{\prime}	493.883
$\mathrm{a}_{\sharp}^{\prime}$	466.164
a^{\prime}	440.000

Johann Sebastian Bach:
'Das wohltemperierte Klavier'
chromatic scale:
12 halftones per octave
I octave = double frequency
\Rightarrow frequency ratio between halftones:

$$
\sqrt[12]{ } 2=1.05946
$$

analogously:

Figure 4.12
Re-sizing images using different methods of interpolation.
NN = 0.5x, using nearest neighbor;
bilin $=0.5 x$, using bilinear interpolation;
bicubic $=0.5 x$, using bicubic interpolation;
bilin x bilin $=2$ times ($0.707 x$, using bilinear interpolation).

b NN

00068578

00068578

bilin x bilin

Figure 4.13
Effect of interpolation methods on noise and gray values.
(a) Detail areas after re-sizing; (b) characters and histograms after re-sizing; $\mathrm{NN}=0.5 x$, using nearest neighbor; bilin $=$ $0.5 x$, using bilinear interpolation; bicubic $=0.5 x$, using bicubic interpolation: bilin x bilin $=2$ times ($0.707 x$, using bilinear interpolation).
original

Median

Figure 4.15
Effect of low-pass frequency filtering.
(a) Original;
(b) FFT (I424 • I006 copied on $2048 \cdot 2048$) noise filtered radius $=768$;
(c) FFT (I424 • I006 copied on $2048 \cdot 2048$) noise filtered radius $=5 \mathrm{I} 2$;
(d) FFT (1424 • I006 copied on $2048 \cdot 2048)$ noise filtered radius $=256$.

Figure 4.16
Effect of noise filtering on profile.
Trace of profile is same as shown in Figure 3.16, filter methods as in Figures 4.14 and 4.15.

