

Figure 6.1
Ranking filters.
(a) $3 \cdot 3$ neighborhood, central pixel highlighted in red;
(b) ranked gray values of $3 \cdot 3$ neighborhood; minimum, median and maximum values are highlighted;
(c) central pixel is replaced by minimum, median or maximum value.

Figure 6.2
Effect of ranking filters on single black pixel in white neighborhood.
(a) $3 \cdot 3$ neighborhood, central pixel highlighted in red;
(b) ranked gray values of $3 \cdot 3$ neighborhood; minimum, median and maximum values are highlighted;
(c) central pixel is replaced by minimum, median or maximum value;
(d) effect of maximum filtering on all pixels of $3 \cdot 3$ neighborhood is shown separately.

Figure 6.3
Effect of ranking filters on single white pixel in black neighborhood.
(a) $3 \cdot 3$ neighborhood, central pixel highlighted in red;
(b) ranked gray values of $3 \cdot 3$ neighborhood; minimum, median and maximum values are highlighted;
(c) central pixel is replaced by minimum, median or maximum value;
(d) effect of minimum filtering on all pixels of $3 \cdot 3$ neighborhood is shown separately.

Figure 6.4
Effect of ranking filters on image detail.
(a) Original bitmap;
(b) selecting median value of $3 \cdot 3$ neighborhood;
(c) selecting minimum value of $3 \cdot 3$ neighborhood;
(d) selecting maximum value of $3 \cdot 3$ neighborhood.

original

c

Figure 6.5
Fine tuning of the ranking filters. (a) Original bitmap; (b) erosion, using a neighborhood count of 7,5,3 and I; (c) dilation, using a neighborhood count of $7,5,3$ and I ; (d) sequences of erosions and dilations until no further changes occur: er7dil7, er5dil5 = erosion first, dilation second; dil7er7, dil5er5 = dilation first, erosion second;
(e) improving on the median: median $\infty=$ repeated median until no further changes occur, combil $=$ combination of dilations and erosions; combi2 $=$ same as combil with 2 erosions at the end.

Figure 6.6
Morphological operations.
(a) Original bitmap;
(b) opening: erosion followed by dilation, using neighborhood count of I;
(c) closing: dilation followed by erosion, using neighborhood count of I.
b

image 1 image 2

I COPY 2

I AND 2
$(I \cap 2)$

I OR 2
($1 \cup 2$)

I XOR 2
 (I| 2)

Figure 6.7
Logical operations on bitmaps.
(a) Two $2 \cdot 2$ bitmaps; image I and 2 (top) with number matrix (below);
(b) 4 logical operations, Boolean notation in brackets;
(c) resulting images;
(d) corresponding truth tables.

Figure 6.8
Adding two images.
(a) Two different images (bitmaps);
(b) results of copying image I onto image 2 , using four different copy modes.

image I

image 2
b

AND

OR

XOR

Figure 6.9
Adding an image to itself.
(a) Image and copy of image, shifted by 2 pixels in positive x - and negative y-direction (2 to the right, 2 upwards);
(b) results of copying image I onto the shifted copy, using four different copy modes.

thicken

outline

skeletonize

prune

Figure 6.10
Structural filtering.
(a) Original image:
(b) filtered versions:
thicken: using OR copy mode;
outline: using 'Outline' command (Process > Binary menu);
skeletonize: using 'Skeletonize' command (same menu);
prune: using 'Prune Skeleton' command (same menu, option key pressed).

Figure 6.II
Special tools for segmentation.
(a) Acetate foil replica of oolithic limestone surface;
$(b-c)$ interactive segmentation:
(b) threshold: median filtered original is thresholded;
(c) fill holes: using the bucket tool, holes are filled manually.
$(d-f)$ separation of ooides, using Image SXM functions; note that some over-segmentation occurs (arrow).

Figure 6.12
Post-processing.
(a) Inverted bitmap obtained by watershed algorithm (see Figure 6.I I.f);
(b) clipping and pruning of erroneous boundaries, dilation with neighborhood count $=4$;
(c) back-inverted result, frame denotes details shown in (a) and (b).

Figure 6.13
Median filtering of bitmaps.
(a) Segmented SEM micrograph of granitoid rock (Figure 5.12.a);
(b) the slices (Figure 5.12.b) are filtered twice using a Median filter;
(c) average of stack, note gap between phases compared to Figure 5.I2.c.

Figure 6.14
Erosion and dilation of bitmaps.
(a) Segmented SEM micrograph of granitoid rock (Figure 5.12.a);
(b) the slices (Figure 5.I2.b) are eroded and dilated with options 8 (weakest), 7, 6, and 5 until no more changes occurred;
(c) average of stack, note gap between phases.

Figure 6.15
Dilation of phases.
(a) Segmented SEM micrograph of granitoid rock (Figure 5.12.a);
(b) the slices (Figure 5.l2.b) are dilated three times using neighborhood option 3;
(c) average of stack, note overlap of phases.

Figure 6.16
Derivation of phase boundaries.
(a) Average of stack with phase maps (see Figure 6.I5);
(b) gray level slicing of (a);
(c) inverted (b);
(d) super-thickened version of (c);
(e) skeleton of (d), thick boundary of image added ('Select All', 'Draw Boundary'), pruning;
(f) same as (e), thick boundary subtracted again, thickened.

Figure 6.17
Final result of segmentation and post-processing.
(a) Segmented SEM micrograph of granitoid rock (Figure 5.12.a);
(b) mosaic of stack with six separated phase maps.
(c) phase boundary map.

Figure 6.18
Derivation of grain boundaries.
(a) Detail of original SEM micrograph of granitoid rock;
(b) phase map of K-feldspar of same area as (a);
(c) copy of (b) onto (a) using AND-adding;
(d) thresholding of (c), super-thickening of the resulting bitmap;
(e) phase boundary map;
(f) copy of (d) onto (e) using the OR copy option; overlay (OR copy) with (c) is used to highlight the K-feldspar phase.

Figure 6.19
Complete segmentation.
(a) Phase map, showing each phase with a distinct gray level;
(b) grain boundary map;
(c) grain map = inverted grain boundary map, unidentified phase (= black in (a)) is subtracted;
(d) copy of (c) onto (a) using AND-adding yields the separated grains of different phases.

Figure 6.21

Phase and grain boundaries.
(a) complete grain boundary map showing the complete boundary of each grain (compare Figure 6.19.b);
(b) phase boundary map showing the boundary between phases only (compare Figure 6.17);
(c) AND-adding (a) and (b) yields the grain boundary map sensu strictu.

Figure $\mathbf{6 . 2 2}$
Comparison of original and segmentation.
(a) Pre-processed SEM micrograph of granitoid rock and histogram with modes of phases superposed;
(b) segmented image displaying six phases and grain boundaries.

