$i-1 / j-1$	$i / j-1$	$i+1 / j-1$
$i-1 / j$	i / j	$i+1 / j$
$i-1 / j+1$	$i / j+1$	$i+1 / j+1$

166	89	72	89	79	82	139	84	22	44	99	131	156	183	193	168
102	49	39	51	62	70	72	31	22	56	124	161	180	205	212	190
70	34	31	62	65	107	114	70	56	72	114	143	180	205	207	171
44	29	24	44	124	92	67	70	56	46	60	151	226	188	141	99
31	29	7	14	84	39	14	27	24	44	114	126	236	219	107	67
24	39	22	9	12	27	19	29	19	54	109	89	183	255	193	97
24	27	24	17	17	39	75	102	82	94	126	141	168	231	231	178
22	22	27	36	19	29	114	121	121	141	168	168	193	207	200	166
19	22	36	41	17	22	60	75	116	107	87	161	193	188	156	129
17	24	56	54	17	14	94	158	97	79	82	89	126	134	119	111
14	27	27	9	12	19	84	156	77	75	102	60	79	104	97	84
12	17	9	2	19	29	54	114	87	89	109	79	79	67	72	94
14	17	14	41	77	99	131	178	151	153	168	139	121	75	65	82
27	36	72	129	156	158	163	200	180	175	195	180	136	49	17	17
29	54	134	180	188	180	158	168	195	190	183	146	107	22	0	2
24	36	97	148	163	175	171	161	168	173	143	99	67	12	7	7

101	86	64	65	72	84	79	61	43	61	102	141	169	188	191	190
85	72	57	61	74	87	85	67	50	67	104	143	171	191	192	190
54	46	40	55	75	85	77	62	53	67	103	148	182	193	179	170
39	33	30	50	70	78	66	55	51	65	96	150	186	189	156	132
32	27	24	37	49	53	42	36	41	58	88	143	185	194	151	117
29	25	20	22	28	36	41	43	52	74	99	143	183	202	175	145
26	25	24	20	22	39	61	75	84	101	121	149	181	206	195	177
22	24	28	26	26	43	70	96	106	115	132	156	183	196	187	176
21	27	35	33	27	42	76	106	112	110	120	140	162	168	156	146
20	26	32	29	22	37	75	101	104	91	93	108	126	132	124	116
18	22	25	22	19	38	80	102	103	88	84	89	90	97	98	96
16	16	18	23	34	58	96	114	120	112	108	104	89	84	82	82
20	24	37	57	78	98	125	139	147	145	143	134	102	75	59	57
29	44	75	110	134	145	159	169	176	176	169	152	108	65	36	30
34	56	98	140	164	168	170	173	178	178	164	139	90	46	14	8
35	62	108	151	172	172	168	170	175	175	155	124	75	35	8	4

Figure 7.2
The effect of a smoothing filter.
(a) Small detail of an image ($16 \cdot 16$ pixel) shown as gray value image (left) and as number matrix (right);
(b) same as (a) after convolution with a $3 \cdot 3$ kernel (box filter, equation 7.l).

166	89	72	89
102	49	39	51
70	34	31	62
44	29	24	44

101	86	64	65
85	72	57	61
54	46	40	55
39	33	30	50

C

102	49	39
70	34	31
44	29	24

1	I	I
1	1	I
1	1	1

d \begin{tabular}{|l|l|l|}
\hline 89 \& 72 \& 89 \\
\hline 49 \& 39 \& 51 \\
\hline 34 \& 31 \& 62 \\
\hline

\cdot

\hline I \& I \& I \\
\hline I \& I \& I \\
\hline I \& I \& I \\
\hline
\end{tabular}$\cdot \mathrm{I} / 9=57$

(a) Detail of image shown in Figure 7.2 before and after filtering, 3 pixels are highlighted;
(b) neighborhood of first pixel and calculation of average;
(c), (d) same as (b) for second and third pixel, respectively.

Figure 7.4
Box filter versus Median filter.
(a) From left to right: micrograph (500 • 375 pixel) of sheared quartzite, histogram and enlarged view of small test image (45.45 pixel); red frame indicates details shown in (d); small test image is shown in lower right corner at the same scale as (a);
(b) same as (a) after filtering with box filter; filter kernel is shown next to micrograph;
(c) same as (a) after Median filtering; Median filter is indicated by a row of 9 pixels sorted by gray value:
(d) effect of box filter and Median filter on small area indicated in (a); both filters are applied 10 times.

Figure 7.5
Gauss filters.
(a) Original: same as Figure 7.4.a;
(b) same as (a) after Gauss filtering; $5 \cdot 5$ filter kernel is shown next to micrograph;
(c) same as (a) after filtering; enlarged gray value representation of $15 \cdot 15$ filter kernel is shown next to test image;
(d) same as (a) after filtering; enlarged gray value representation of $45 \cdot 45$ filter kernel is shown next to test image.

The true size of the filter kernels is indicated by little squares in the lower right of the micrographs (b) to (d).

Figure 7.6
Size of filter kernel.
(a) From left to right: $3 \cdot 3,5 \cdot 5,7 \cdot 7$, and $15 \cdot \mathrm{I} 5$ neighborhood with central pixel (red);
(b) gray value representations of filter kernels: from top to bottom: $3 \cdot 3$ averaging filter kernels shown in Figures 7.7.b, 7.7.c and 7.7.d, respectively;
(c) from left to right: three Gauss filters (5 • 5, 7 7 and I5 15).

Figure 7.7
Influence of shape of filter. (a) Original: same as Figure 7.4.a; (b) same as (a) after filtering; box filter kernel is shown next to micrograph; (c) same as (a) after filtering; '+' shaped filter kernel is shown next to micrograph; (d) same as (a) after filtering; ' x ' shaped filter kernel is shown next to micrograph; (e) same as (a) after filtering using 'Smooth' command (Process menu).

original

b

1	1	2	2	2	1	1
1	2	2	4	2	2	1
2	2	4	8	4	2	2
2	4	8	16	8	4	2
2	2	4	8	4	2	2
1	2	2	4	2	2	1
1	1	2	2	2	1	1

Gaussian 7-7

C

1	1	1	1	1	1	1
1	1	1	1	1	1	1
1	1	1	1	1	1	1
1	1	1	1	1	1	1
1	1	1	1	1	1	1
1	1	1	1	1	1	1
1	1	1	1	1	1	1

Box filter 7-7
d

Filter $=$ test image

Figure 7.8
Influence of size and shape of filter kernel.
(a) Original: same as Figure 7.4.a;
(b) same as (a) after Gauss filtering; $7 \cdot 7$ filter kernel is shown next to micrograph;
(c) same as (a) after filtering with box filter; $7 \cdot 7$ filter kernel is shown next to micrograph;
(d) same as (a) after filtering with $45 \cdot 45$ filter kernel: enlarged gray value representation of filter kernel (= test image) is shown next to micrograph.

original

b

0	0	0
0	1	-1
0	0	0

Horizontal point separation I px

C

0	0	0
1	0	-1
0	0	0

Horizontal point separation 2 px

Horizontal line separation 2 px

1	1	1
0	0	0
-1	-1	-1

Vertical line separation 2 px

Figure 7.9
Gradient filters. (a) Original: same as Figure 7.4.a; (b) to (f) same as (a) after gradient filtering: (b) horizontal point separation, separation = I pixel; (c) horizontal point separation, separation = 2 pixel; (d) horizontal line separation, separation = 2 pixel; (e) vertical line separation, separation $=2$ pixel; $\ln (b-e)$, filter kernel is shown next to micrograph; gray values are scaled such that minimum difference $=0$ (white) and maximum difference $=255$ (black).

C

Image SXM Shadow West

Figure 7.10
Shadows.
(a) Original: same as Figure 7.4.a;
(b) same as (a) after application of North Shadow filtering;
(c) same as (a) after application of West Shadow filtering.

b

C

SW-NE

0	0	-1
0	I	0
0	0	0

SE-NW

0	-1	0
0	0	1
0	0	0

NE-SW

0	0	1
0	-1	0
0	0	0

NW-SE

0	I	0
0	0	-I
0	0	0

e

f

Figure 7.11
Roberts cross.
(a) Original: same as Figure 7.4.a;
(b) same as (a) after application of SW-NE step;
(c) 4 gradient filters of Roberts Cross;
(d) test image after application of filters shown in (c);
(e) maximum of 4 images shown in (d), contrast enhanced;
(f) thresholded version of (e).

Figure 7.12
Edge detection with Roberts cross.
(a) Original: same as in Figure 7.4.a, left;
(b) image after application of filters shown in Figure 7.I I.c;
(c) maximum of 4 images shown in (b), contrast enhanced;
(d) thresholded version of (c).

1	2	1
0	0	0
-1	-2	-1

1	0	-1	-I	-2	-1
2	0	-2	0	0	0
1	0	-I	1	2	1

-1	0	1
-2	0	2
$-I$	0	1

-2	-1	0
-1	0	1
0	1	2

0	I	2
$-I$	0	I
-2	$-I$	0

2	1	0
1	0	-1
0	-1	-2

0	-1	-2
1	0	-1
2	1	0

b

Figure 7.13
Sobel operator.
(a) 8 gradient filters;
(b) test image (c) after application of filters shown in (a);
(c) original test image;
(d) maximum of 8 images shown in (c), contrast enhanced;
(e) thresholded version of (d).

Figure 7.14
Edge detection with Sobel operator.
(a) Image (b) after application of filters shown in Figure 7.I3.a;
(b) original image;
(c) maximum of 8 images shown in (c), contrast enhanced;
(d) thresholded version of (c).

a

C

d

Figure 7.15
Edge detection in Image SXM.
(a) Find Edges (Sobel edge detection);
(b) Find Edges (5×5);
(c) 'hand made' Sobel edge detection (as in Figure 7.14.c);
(d) Roberts Cross, for comparison.

-1	-1	-1	-1	-1
-1	-1	-1	-1	-1
-1	-1	40	-1	-1
-1	-1	-1	-1	-1
-1	-1	-1	-1	-1

Laplace 5-5

-1	-1	-1
-1	12	-1
-1	-1	-1

Laplace 3 • 3

Laplace 3 • 3

Figure 7.16
Laplace filter for sharpening.
(a) Original: blurred version of Figure 7.4.a;
(b) same as (a) after application of $5 \cdot 5$ Laplace filter;
(c) same as (a) after application of $3 \cdot 3$ Laplace filter;
(d) same as (a) after applying 3•3 Laplace filter two times; filter kernels are shown next to micrographs.

b

-1	-1	-1
-1	8	-1
-1	-1	-1

Laplace 3 - 3

C

-1	-1	-1
-1	8	-1
-1	-1	-1

Laplace 3 - 3

Figure 7.17
Edge detection with Laplace filter.
(a) Original: similar to Figure 7.4.a;
(b) same as (a) after application of $3 \cdot 3$ Laplace filter;
(c) same as (b) after thresholding.

a

C

Figure 7.18
Effect of Gauss filter on gray value profiles.
(a) Original image (same as Figure 7.4.a) and gray value profile along trace;
(b) image (a) after $5 \cdot 5$ Gauss filtering;
(c) difference image obtained by subtracting (b) from (a).
import raw image [0]
crop and scale - fast [1]
crop and scale - smooth [2]
Median filter stack [U]
Sobel filter stack [O]
sharpen stack [H]
enhance stack [C]
equalize stack [E]
threshold stack [B]
adaptive -mean- threshold stack [G]
density slice stack [D]
skeletonize stack [K]
prune stack $[\mathrm{P}]$
average of stack [A]
max of stack [Z]
max of windows into first [W]
Median filter image [M]
prune image [I]
skeletonize image [J]
equalize image [Q]
density slice image about 128 [L]
thicken lines [T]
smooth image [S]
smooth image more [U]

cut away rim [4]

black rim for boundary map [5]
white rim for grain map [6]
smooth enlarge of outlines [8]
invert image [Y]
scale to pixel $[X]$
info on histo [F]
black area percent of bitmap [\$]
(I) file opening and re-sizing
(2) working with the stack
(3) combining the slices
(4) working with the combined image
(5) editing the grain boundary map

C

Figure 7.20
Lazy grain boundaries macro: working with the stack.
(a) Original image: color micrograph of naturally deformed quartzite;
(b) color channels: $\mathrm{R}=$ Red, $\mathrm{G}=\mathrm{Green}, \mathrm{B}=$ Blue; arrows point to same site in R, G, an B ;
(c) same as (b), after application of histogram equalization;
(d) same as (c) after Median filtering (2 times);
(e) same as (d) after Sobel edge detection; arrows point to same site;
(f) same as (e) after thresholding;
(g) same as (f) after Median filtering;
(h) same as (g) after skeletonizing; arrows point to same site;
(i) original with sum of (h) superposed.

(1)
(2)

Figure $\mathbf{7 . 2 0}$

Figure 7.21
Lazy grain boundaries macro: working with the combined image.
Slices of segmented stack are combined at various points of post-processing:
(a) after Sobel filtering [O] (Figure 7.20.e);
(b) after thresholding [G] (Figure 7.20.f);
(c) after median filtering [U] (Figure 7.20.g);
(d) after skeletonization [J] (Figure 7.20.h).

Figure 7.22
Lazy grain boundaries macro: creating grain boundary maps.
Further processing using image shown in Figure 7.2I.b (uog-z) as starting point, the key strokes of the applied macros (Figure 7.19) are indicated:
(a) after median filtering (3 times);
(b) same as (a) after skeletonizing;
(c) same as (b) after pruning, line thickening, skeletonizing and pruning;
(d) same as (c) after thickening of lines and blackening the grains that cut the image boundary.

