

d

С

Figure 8.1

The objects of image analysis.

(a) Micrograph of twinned grain in deformed marble: grayscale image;

(b) segment, representing cross sectional area of the grain;

(c) outline and axes of best-fit ellipse superposed on segment;

(d) digitized outline of segment: polygonal chain connecting 15 vertices along segment boundary.

a	b		C
	Measurement Options		Particle Analysis Options
d	 Area Mean Density Standard Deviation X-Y Center Modal Density Perimeter/Length Ellipse Major Axis Ellipse Minor Axis Ellipse Minor Axis Angle Integrated Density Min/Max Bounding Box 	 Redirect Sampling Include Interior Holes Wand Auto-Measure Adjust Areas Headings Max Measurements (1-99999): 9000 Field Width (1-18): 14 Digits Right of Decimal Point (0-8): 3 Allow To Vary With Image Size [units]	Min Particle Size (Pixels): 1 Max Particle Size (Pixels): 999999 Label Particles Outline Particles Outline Particles Touching Edge Include Interior Holes Include Interior Holes Reset Measurement Counter Stop When Count = Max M'ment Cancel OK
	User 3 User 6	[title/com] Cancel OK	

#	Area	Mean	Х	Y	Mode	Len	Majr	Minr	Angle	xBB	yBB	wBB	hBB
1	4664	255.00	50.17	54.88	255	303.81	81.37	72.98	70.80	13	15	82	91
2	3258	255.00	157.50	41.00	255	217.48	78.05	53.15	0.00	119	15	78	53
3	3393	255.00	188.00	125.00	255	249.66	98.17	44.01	90.00	169	82	39	87
4	4664	191.03	115.17	122.88	255	303.81	81.37	72.98	70.80	78	83	82	91

e

- Using the Analyze menu of Image SXM.
- (a) Bitmap with 4 shapes (segments);
- (b) dialog window for Measurement Options;
- (c) dialog window for Particle Analysis Options;
- (d) same as (a), after analysis;
- (e) list showing results:
- # = number of particle;
- Area = area (number of pixels);
- Mean = mean density of segment;
- X = x-coordinate of geometric center;
- Y = y-coordinate of geometric center;
- Mode = modal gray value;
- Len = length of outline of segment;
- Majr = major diameter of best-fit ellipse;
- Minr = minor diameter of best-fit ellipse;
- Angle = angle of Majr with respect to positive x-axis (CCW positive);
- xBB = x-coordinate off top left corner of bounding box;
- yBB = y-coordinate off top left corner of bounding box;
- wBB = width of bounding box;
- hBB = height of bounding box.

Shape and size measures from segments. In black: measured; in blue: derived;

- A = area of segment;
- P = length of perimeter;
- r_{equ} = equivalent radius;
- d_{equ} = equivalent diameter;
- P_{equ} = equivalent perimeter.

Shape and size measures from best-fit ellipses.

- X,Y = center point;
- 2a (=Majr) = major diameter;
- 2b (=Minr) = minor diameter;
- φ = orientation of major diameter, positive, CCW from positive x-axis.

measure	describing:		
r _{equ} , a, b	size (linear)		
wBB, hBB	caliper diameters, (projection lengths)		
P / P _{equ}	circularity, ("fractal dimension")		
b/a	axial ratio, (roundness)		
a / b	aspect ratio, (elongation)		

Table 8.1

Shape and size descriptors derived from the analysis of segments and best-fit ellipses.

Segmented input for image analysis.

(a) Original SEM micrograph of granitoid rock;

(b) bitmap of quartz;

(c) bitmap of plagioclase.

С

b

Truzzo grain qtz (Meas) 3.5 Rf 3.0 2.5 2.0 1.5 1.0 0 90 30 60 120 150 180 angle

OK

Figure 8.6

Results for quartz.

Bitmap shown in Figure 8.5.b has been analyzed.

(a) Plot of short versus long diameter;

(b) same as (a) with linear curve fit (through zero): slope = 0.634;

(c) statistics of axial ratio (b/a): average = 0.626;

(d) (b/a) versus equivalent radius, r_{equ} ;

(e) R_f - ϕ plot: a/b versus orientation;

(f) measured perimeter, P, versus equivalent perimeter, P_{equ} : 'fractal dimension' = 1.22.

b

С

d

Figure 8.7

Comparative analysis of quartz and plagioclase. Bitmaps shown in Figure 8.5.b and 8.5.c have been analyzed. (a) average axial ratio: quartz b/a = 0.63, plagioclase b/a = 0.47; (b) dependence of shape on size; (c) preferred orientation, $R_f - \phi$ plot, quartz ± random, plagioclase preferred orientation at 0° (=180°); (d) shape of boundary, 'fractal dimension': quartz $P/P_{equ} = 1.22$, plagioclase $P/P_{equ} = 1.33$.

Segment boundaries and outlines.

- (a) Original grayscale image (micrograph of deformed marble);
- (b) segmented bitmap of (a): grain map;
- (c) grain boundary map of (a);
- (d) outlines of segments: outlines of gray segments are closed; all others are open.

digitize xy	[1]
end 9999	[2]
fill area	[3]

```
macro 'digitize xy [1]';
var
    i,j,x,y:integer;
XCount:integer;
begin
    SetUser1Label('x');
    SetUser2Label('y');
    SetOptions('User1 User2 ');
    XCount:=rCount+1;
GetMouse(x,y);
rUser1[XCount]:=x;
```

rUser2[XCount]:=y;

```
macro 'end 9999 [2]';
var
    i,j,x,y:integer;
XCount:integer;
```

end;

```
begin
   SetUser1Label('x');
   SetUser2Label('y');
   SetOptions('User1 User2 ');
   XCount:=rCount+1;
rUser1[XCount]:=99999;
rUser2[XCount]:=99999;
Measure;
ShowResults;
```

```
var
    i,j,x,y:integer;
XCount:integer;
begin
    SetUser1Label('x');
    SetUser2Label('y');
    SetOptions('User1 User2 ');
    XCount:=rCount+1;
GetMouse(x,y);
SetForeGroundColour(128);
AutoOutline(x,y);
Fill;
```

macro 'fill area [3]';

end;

```
end;
```

Measure;

ShowResults;

Figure 8.9

Digitizing macro.

[I] Digitize mouse location;

[2] write end coordinate (9999,9999);

[3] fill segment under cursor (works only for bitmaps).

Digitizing outlines.

- (a) Bitmap of segment; boundary pixels highlighted;
- (b) 253 line segments connecting 254 boundary pixels; last and first are not connected;
- (c) inscribed polygon; 16 vertices marked by circles;
- (d) using high resolution digitizing tablet: 69 straight line segments connect 69 digitized points; loop is closed.

С

Figure 8.11

Curved lines on a grid.

- (a) Original continuously curved line, connecting 7 points;
- (b) same as (a) with straight lines (polygonal chain) connecting points (vertices) in blue;
- (c) polygonal chain of (b) placed on a digitizing grid (blue circles and lines); grid points closest to vertices are connected

to form digitized version of (a) (red circles and lines); boundary pixels are highlighted in light red.

С

Figure 8.12

a

Digitizing artifacts.

(a) Digitizing grid with four 10° sectors; n = number of possible end points for lines ($I \le L \le 5$) starting at origin;

b

(b) number of possible lines, $p(\alpha)$, as function of orientation, for lines $(I \le L \le 5)$ and for different angular resolutions, $\Delta \alpha$; the first bin is centered at 0°;

(c) same as (b); the first bin is centered at $\Delta \alpha/2$;

 $\Delta \alpha$ = angular resolution;

 α_0 = center of first bin;

- L = length of line segments in grid units;
- $p(\alpha)$ = grid points within sector.

Density distribution of grid points.

(a) Three ring sectors with $\Delta L = 2$ and $\Delta \alpha = 10^{\circ}$;

(b) number of possible lines, $p(\alpha)$, as function of orientation, for lines with $L_{low} = 1$ and $L_{up} = 5$ to 100, for different angular resolutions, $\Delta \alpha$;

(c) same as (b), for $L_{low} = 25, 50$ and 95;

 $\Delta \alpha$ = angular resolution;

 α_0 = center of first bin = 0°;

L = length of line segments in grid units; L_{low} = lower bound; L_{up} = upper bound; $p(\alpha)$ = grid points within sector $\Delta \alpha$.

S

C

a

С

Figure 8.14

Smoothing digitized outlines.

(a) Polygonal chain with 7 integer coordinates (X,Y) defined on digitizing grid;

(b) X and Y coordinates plotted against integrated path length, s;

(c) smoothing spline functions, x(s) and y(s), fitted to discrete values of X and Y; smoothing error = 1; blue dots denote new (continuous) coordinates picked at regular intervals along s;

(d) new coordinates are plotted in x-y plane; integer coordinates of (a) are superposed for comparison.

0	0	
562	38	
580	38	
580	39	
585	39	
585	40	
589	40	
•••	• • •	etc.
548	42	
548	41	
553	41	
553	40	
558	40	
558	39	
562	39	
0	0	
596	47	
601	47	
601	48	
• • •	• • •	etc.

0 100 200 300 400 500 600 700

Software Box 8.1

Input files for SCASMO.

Example 1: Grayscale image, plot of digitized contours, including separator coordinates (9999,9999); total number of points = 3185, magnification: 1.047 μ m / pixel.

Example 2: segmented bitmap, plot of boundary coordinates, including separator coordiantes (0,0); total number of points = 9540, magnification: 3.6842 μ m / pixel.

Text on gray background: source files for plot = input file for SCASMO.

plus optional: scaling, smoothing, closing of outlines
plus optional: reduction of number of coordinate points
maximum number of points per particle = 4000
particles with less than 3 points are discarded

input file:

for	each particle:	Χ,Υ	integer x-y coordinates
		• • •	etc.
		XE,YE	end coordinate (XE=YE)
utput	file:		
lin	.e 1:	bti	title
lin	.e 2:	n	total number of points
for	each particle:	х,у	floating x-y coordinates
		• • •	etc.
		xe,ye	end coordinates

```
name of input file:
     ct1Coords.txt
magnification (mm/inch/etc. per pixel):
     3.6842
2
     end coordinates of input file (one number):
3
      \left( \right)
      end coordinate of output file (one number):
     9999
4
     want to reduce number of digitized points ?
      1=yes, 0=no
5
     resolution (resampling between points):
      (1)fine (2)medium (3)coarse (4)manual
6
      indicate min.dist (same units as outlines):
7
      20
      distmin = 20.00000
     want completed outlines ? (1=yes, 0=no):
8
      1
     want smoothing ? 1=yes,0=no :
9
      smoothing error (in pixel units):
10
     want inverted axes? 0=no; 1=x-axis; 2=y-axis; 3=both :
want spacing... 1=regular, 0=as digitized :
12
     name of output file ? [ct1Coords.txt.scm] (return=default):
13
     type header (maximum length = 132 characters):
     ct1 SXM Coords 1 px smooth
14
```

Software Box 8.2

Dialog with program SCASMO; answers are numbered and highlighted, see text for explanation.

ct1 1 px smooth			ct1 SXM Coords 1 px smoo			
3185			1894			
3322.2859	5367.9067		2071.7583	-142.64511		
3329.9636	5382.5005		2101.1436	-140.12206		
3339.9858	5395.5610		2129.5110	-140.71396		
3350.3250	5408.0444		2155.8850	-144.78642		
3362.5251	5421.1118		2176.1084	-152.86475		
••••	••••					
3435.6853	5334.0098		1913.2555	-233.74568		
3416.6008	5338.5054		1929.3328	-215.58563		
3393.9631	5342.9556		1949.5594	-197.32109		
3375.1279	5346.1025		1971.2324	-180.48318		
3355.2957	5349.2959		1994.3207	-166.30144		
3333.4331	5354.2905		2018.8632	-155.35596		
3322.5149	5363.1323		2044.5809	-147.70366		
3322.2859	5367.9067		2071.7583	-142.64511		
9999.0000	9999.0000		9999.0000	9999.0000		
3246.3596	5128.7568		2199.2988	-181.43900		
3255.3682	5141.4678		2220.1973	-180.86613		
	• • • • • • • • • •					

Software Box 8.3 Output files of SCASMO.

Effect of smoothing outlines.

(a) Outlines as digitized;

(b) outlines closed and smoothed with a smoothing error of I pixel;

(c) same as (b) with a smoothing error of 2 pixels;

(d) same as (b) with a smoothing error of 4 pixels.

Shape distortion through smoothing.

- (a) Superposed plots of differently smoothed outlines;
- (b) to (e) separate views of outlines shown in (a);
- (b) outlines as digitized;
- (c) smoothed with a smoothing error of I pixel;
- (d) smoothed with a smoothing error of 2 pixels;
- (e) smoothed with a smoothing error of 4 pixels.

Flow chart for the FABRIC package.

The programs are written in Fortran; the format for all input and output files is ASCII text.