a

Figure II.I
Grain size and physical processes.
(a) Grain size distribution in cataclastic rock relates to fragmentation, comminution;
(b) mean grain size in dynamically recrystallized marble relates to flow stress;
(c) grain size distribution of oolithic limestone relates to environment of deposition.

C
d

(a) Different cross sections of grains, all with same area A;
(b) circle with same area as shapes in (a); $r_{\text {equ }}=$ radius, $d_{\text {equ }}=$ diameter of area equivalent circle;
(c) different 3-D grains, all with same volume V ;
(d) sphere with same volume as grains in (c); $R_{\text {equ }}=$ radius, $D_{\text {equ }}=$ diameter of volume equivalent sphere.
\mathbf{a}

C

Figure II. 3
Image SXM grain size analysis.
(a) Segmented image of oolithic limestone (for polished section, see Figure 2.3);
(b) bitmap after evaluation;
(c) histogram of diameters;
(d) histogram of areas of cross sections.

b

long axis (mm)

e

Figure I I. 4
Linear grain size measures for oolithic limestone.
Results are shown as histograms for:
(a) equivalent diameters, dequ;
(b) perimeter divided by π;
(c) long diameters of best-fit ellipses, a;
(d) short axes of best-fit ellipses b;
(e) width of bounding box;
(f) height of bounding box;
arithmetic means are indicated (red).

C

area $\left(\mu \mathrm{m}^{2}\right)$

Figure I 1.6
Grain size of white and gray Carrara marble.
Results are shown as histograms for:
(a) equivalent diameters, dequ, of white variety;
(b) equivalent diameters, $d_{\text {equ }}$, of gray variety;
(c) areas, A , of white variety;
(d) areas, A, of gray variety;
arithmetic means are indicated (red).

d

f calcite + anhydrite
 $r_{\text {corr }}(\mu \mathrm{m})$

Figure II.7
Grain size analysis of two-phase aggregate of calcite and anhydrite.
(a) Grain map of 50:50 anhydrite calcite mixture: anhydrite (light gray), calcite (dark gray) and grain boundaries (black) (line drawing courtesy David Bruhn);
(b) phase map of same material, showing 2 mineral phases, locations of phase and grain boundaries are marked (red);
(c) detail of (a) showing a phase boundary (left) and a grain boundary (right);
(d) detail of (b) showing a phase boundary (left) and a grain boundary (right).
(e) $r_{\text {equ }}=$ radius of measured cross sectional areas (equation 8.I);
(f) $r_{\text {corr }}=$ radius of corrected cross sectional areas (equation 8.4);
arithmetic means are indicated in red.

Figure II.8
Grain size analysis of calcite and anhydrite in 50:50 mixture.
(a) Grain map and histogram of corrected radii, $r_{\text {corr }}$, for calcite;
(b) grain map and histogram of corrected radii, $r_{\text {corr }}$, for anhydrite;
solid red lines $=$ arithmetic means; stippled line $=$ mean for (calcite+anhydrite) (from Figure II.7.f).

Figure II.9
Grain size analysis of dynamically recrystallized quartzite.
(a) Micrographs (circular polarization) showing sites of increasing recrystallization:A ~10 \%, B ~25 \%, C ~55 \%, D ~75 \%; scale applies to all (samples courtesy Jan Tullis); (b) histograms of equivalent radii, $r_{\text {equ }}$, for samples A to D; stippled lines $=$ modal values; solid lines $=$ mean values.
i,j,n,mean,mode,min,max, maxarea, number:integer;
xx,yy,dummy:integer;
begin
PutMessage('Use grain map (=INVERSE grain boundary map)');
SetScale(0,'pixel');
ResetCounter;
SetCounter (0);
SetOptions('x-y center, area');
SetParticleSize(1,99999);
AnalyzeParticles('reset');
number:=rCount;
maxarea:=0;
for $i:=1$ to number do begin
if rarea[i] > maxarea then maxarea:=rarea[i];
end;
maxarea:= GetNumber('area ? measured max (sq px = ', maxarea);
SetDensitySlice (1,250);
MakeBinary;
for $i:=1$ to number do begin
xx:=Xi[i];
yy:=Yi[i];
AutoOutline(xx, yy);
Measure;
GetResults (n, mean, mode, min, max) ;
dummy:= $254 * \mathrm{n} /$ maxarea;
if dummy > 254 then dummy:=254;
SetForegroundColor (dummy);
if GetPixel(xx,yy) > 0 then Fill;
end;
SetPalette('rainbow', 0);
SelectAll;
end;
maxrad:=sqrt(maxrad/3.14159);
maxrad:= GetNumber('radius ? measured max $(\mathrm{px})=$ ', maxrad);
SetDensitySlice (1,250);
MakeBinary;
for $i:=1$ to number do begin
xx:=xi[i];
Yy:=Yi[i];
AutoOutline(xx,yy);
Measure;
GetResults (n, mean, mode, min, max);
dummy:= $254 *$ sqrt(n/3.14159)/maxrad;
if dummy > 254 then dummy:=254;
SetForegroundColor (dummy);
if GetPixel(xx,yy) > 0 then Fill;
end;

Figure II. 10
Grain size mapping for Carrara marble.
Grain maps of white and gray variety (from Figure II.5) with cross sectional areas colored according to linear size, color code applies to both.
(a) Grain size map of white variety
(b) grain size map of gray variety.

Figure II.II
Grain size mapping for calcite - anhydrite mixture.
Cross sectional areas are colored according to size, color code applies to all.
(a) Grain size map of mixture (from Figure II.7.a);
(b) grain size map of calcite;
(c) grain size map for anhydrite.

a

Figure II.I2
Grain size mapping.
Sample sites A to D correspond to (a) to (d) in Figure II.9;
(a) linear scale for diameter (pixels); (b) linear scale for area (square pixels),

