

Figure 13.1

Self-similarity at various scales
Various types of fault rock, shown at increasing magnifications
(a) shown in outcrop; (b) same as (a) in thin section; (c) thin section with angular (in-situ) fragments; (d) same as (c) with angular (in-situ) and rounded (dislocated) fragments; (e) SEM micrograph with (dislocated) angular fragments.

Figure $\mathbf{1 3 . 2}$
Fragmentation of a cube.
Fragmentation of the cube produces 8 cubes $(F=8)$ of $I / 2$ the width of the original.
(a) Example of a cube where, at each scale, 2 out of 8 cubes remain unfragmented ($\mathrm{N}=2$), while 6 are fragmented further;
(b) front view of cube (a): the fragmentation fraction, $f=(F-N) / F=6 / 8$;
(c) front view of a cube with $f=4 / 8$;
(d) front view of a cube with $f=1 / 8$.

Figure 13.3
Two conceptual models for grain size determination.
(a) Stereological model: particles are diluted in matrix;
(b) fractal model: fragments are densely packed.

C

Figure 13.4
Fractal dimension of grain size distribution created by fragmenting a cube.
Fragmentation number, F, is 8 (as in Figure I3.2), fragmentation fractions, f, range from I/8 to 7/8.
(a) $\log (N)-\log (r)$ plot, where $N=$ number and $R=$ size of fragments, the slope, $D_{3 d}$, is the fractal dimension of the size distribution of 3-D grains;
(b) $\log (N)-\log (r)$ plot where $N=$ number and $r=$ size of cross sections of fragments, the slope, $D_{2 d}$, is the fractal dimension of the size distribution of 2-D grains;
(c) $\log (V)-\log (r)$ plot where $V=$ volume and $R=$ size of fragments, $E=D_{3 d}-3$.

Figure 13.5
Higher fragmentation numbers.
Front views of cubes with different fragmentation numbers, F, and different fragmentation fractions, f. The cube is fragmented into:
(a) $F=2 \cdot 2 \cdot 2=8, N=2, f=6 / 8 ;$
(b) $\mathrm{F}=3 \cdot 3 \cdot 3=27, \mathrm{~N}=3, \mathrm{f}=24 / 27$;
(c) $\mathrm{F}=4 \cdot 4 \cdot 4=64, \mathrm{~N}=4, \mathrm{f}=60 / 64$.

a

b

Figure I 3.7

Fractal dimension for continuous fragmentation fraction, f.
Fragmentation number, $\mathrm{F}=8$.
(a) Discrete fragmentation fraction, $f=\left(F-N_{i}\right) / F$ for $i=I$ to 8;
(b) same plot as (a) for continuously defined $f:(0.00 \leq f \leq 1.00)$.

C

b

d

Figure I 3.8
Fractal dimension for continuously defined fragmentation numbers and fragmentation fractions.
(a) $D_{3 d}$ for fragmentation numbers $F \geq 8$;
(b) $D_{3 d}$ for fragmentation numbers $F \leq 8$;
(c) $D_{2 d}$ for fragmentation numbers $F \geq 8$, note that $D_{2 d}=D_{3 d}-I$;
(d) $D_{2 d}$ for fragmentation numbers $F \leq 8$, note that $D_{2 d}=D_{3 d}-I$.

Plots (c) and (d) correspond to region framed in (a) and (b).

Figure 13.9
Fractal dimensions from different fragmentation processes.
Iso-lines of fractal dimension, $\mathrm{D}_{3 \mathrm{~d}}$, for varying fragmentation numbers, N , and fragmentation fractions, f .
(a) Curves of $D_{3 d}$ for ($0 \% \leq f \leq 100 \%$) and ($0 \leq \mathrm{F} \leq 125$);
(b) expanded view of plot indicated by rectangle in (a) for ($50 \% \leq f \leq 100 \%$) and ($0 \leq F \leq 8$).

23.7 \% matrix

31.6% matrix

42.2 \% matrix
(b) $\mathrm{L}_{\mathrm{m}}=1 / 16$ and matrix content $=31.6 \%$;
(c) $L_{m}=1 / 8$ and matrix content $=42.2 \%$.
a

b

Figure 13.1I

Apparent matrix content and fractal dimension.
(a) Cumulative volume, $\Sigma \mathrm{V}$, is shown as function of $\log (\mathrm{R})$ for different $\mathrm{D}_{3 \mathrm{~d}}$ (compare Figure I3.4.c); fragmentation number $F=8, f=$ fragmentation fraction, $R=$ size of fragments, $D_{3 d}=$ fractal dimension of the size distribution of 3-D grains;
(b) matrix contents, $m \%$, is shown as functions of $D_{2 d}$ for different matrix lengths scales, L_{m}; the fractal dimension $(0.00 \leq$ $\mathrm{D}_{2 \mathrm{~d}} \leq 2.00$);
(c) matrix-D diagram showing fractal dimension $\left(0.00 \leq D_{2 d} \leq 2.00\right)$ versus matrix content for a range of matrix lengths scales, $L_{m}=I / 32, I / I 6, I / 8, I / 4$ and $I / 2$ (for L_{m} see Figure 13.10).

Figure 13.12
Deriving the fractal dimension from the matrix content.
(a) SEM micrograph of fault rock at increasing magnification;
(b) bitmaps of (a), area percentage of matrix indicated;
(c) matrix-D diagram (see Figure 13.1 I) with matrix data for samples I to 5 ; matrix length scale, $L_{m}=1 / 16$ for $I, 2, L_{m}=$ I/8 for 3,4, and $L_{m}>\mathrm{I} / 4$ for 5;
(d) $\log (N)-\log (R)$ plot constructed from D-values (slopes) of areas I to 5 .

b

C

1	gouge	74%	1.78
2	cracked	57%	1.59
3	cracked	43%	1.39
4 gouge	82%	1.86	
5	cracked	55%	1.57
	all	65%	1.79

Figure 13.13
Local variation of the fractal dimension.
(a) SEM micrograph of experimentally produced cataclastic shear zone (displacement vertical, shear sense indicated, sample courtesy Nynke Keulen);
(b) bitmap of (a), 5 sites are indicated;
(c) matrix-D diagram (see Figure I3.1I) with matrix data for sites I to 5 ; blue = data for entire bitmap; matrix length scale, $L_{m}=I / 8$ for entire image, $L_{m}=I / 4$ for areas I to 5 .

b

C

Non-fractal size distribution.
(a) Bitmap of experimentally produced cataclastic shear zone (Figure I3.I3);
(b) grain size analysis of fragmented part;
(c) grain size analysis of part with mature gouge;
$r=$ size, $N=$ number of fragments, total number indicated; $D=$ negative slope of line fit.

Figure 13.15
Fractal dimension from measured matrix content and D-value from measured grain size analysis.
(a) Matrix contents as functions of D, expanded version of plot shown in Figure I3.II.b; black symbols are measured data points for cracked and gouge material;
(b) expanded matrix-D diagram (see Figure I3.II.c); same data points as in Figure I3.I5.a; note $D>2$ for gouge. Lines denote matrix lengths scales $L_{m}=I / 32, I / I 6, I / 8, I / 4$ and $I / 2$ (see Figure I3.II.c);
pink and gray shaded areas outline range of matrix\%- and D- values separating cracked from gouge material.

Figure I 3.16
Mapping fractal dimensions of grain size distributions.
(a) The Lazy D map menu;
(b) step I: creating matrix density maps: 63-63 Gauss filter kernel shown as brightness image;
(c) step II: converting to fractal dimension: look-up tables LUTI to LUT5 for matrix length scales, L_{m}, from I/2 to I/32
(d) step III: using color LUTs to visualize (example from left to right: 10 colors for $0-100 \%$ matrix, 20 steps with red line at 50% and yellow strip at 80%).
a

C

b

d

Figure I 3.17

Creating look-up tables from matrix-D diagrams.
Matrix density (0% to 100%) is converted to index (0 to 255), fractal dimension, $\mathrm{D}_{2 \mathrm{~d}}$, to gray value, GV , (0 to 255).
(a) and (c) for ($0.00 \leq \mathrm{D}_{2 \mathrm{~d}} \leq 2.00$); matrix lengths scales, L_{m}, are indicated.
(b) and (d) for ($1.00 \leq \mathrm{D}_{2 \mathrm{~d}} \leq 2.00$); name of LUT indicated.

Figure I3.18
Preparing the bitmap.
Pre-processing by rolling ball background subtraction with decreasing radius, by enhancing, and bicubic smoothing (top to bottom).
(a) Grayscale images, radius of rolling ball indicated;
(b) histogram with threshold level indicated;
(c) resulting bitmap, average area fraction of matrix indicated; arrows point to areas where matrix is underestimated

Figure 13.19
Creating matrix density maps by Gauss convolution.
Matrix density images are calculated by de-magnifying image proportional to $63 \cdot 63$ Gauss filter kernel (maximum filter size for Image SXM), (2) convolving, and (3) re-magnifying to original size.
(a) Original bitmap, average gray value $=164$, corresponding to matrix density of 65%;
(b) to (e) matrix density images, the corresponding filter diameters are indicated; note that range in histograms decreases while average matrix density remains constant (65%).

C

Figure I $\mathbf{3 . 2 0}$
Visualizing matrix density maps.
(a) Scaled matrix density map, diameter of Gauss filter $=200$ pixels;
(b) same as (a) seen with 20 gray levels, 50% and 65% contour are indicated in red and yellow, respectively;
(c) color coding of matrix content, lower cut-off $=10 \%$ (white), upper cut-off = 90\% (black).
\square

C

1.50	$\mathrm{D}_{2 \mathrm{~d}}$	≥ 1.80	

Figure 13.21

Converting matrix density to fractal dimension.
(a) Scaled map of fractal dimension (D map) obtained by applying LUT3 (for $L_{m}=I / 8$) to matrix density image (Gauss filter $d=200$ pixels); average $D_{2 d}=1.76$; LUT shown in upper left corner;
(b) same as (a) after stretching gray values to ($1.00<\mathrm{D}_{2 \mathrm{~d}}<2.00$);
(c) same as (a) after cropping to $D_{2 d}<1.8$;
for comparison, (a) and (b) shown with 20 gray levels;
(d) same as (a) using 'Fire-2' LUT of Image SXM and setting LUT options to 20 colors;
(e) same as (c), after applying command [E] of the Lazy D map macro a second time ($1.50 \leq \mathrm{D}_{2 \mathrm{~d}} \leq 2.00$), filling the white area with black, setting LUT options to 10 colors and applying LUT;
(f) contour map obtained from (e) using 'Find Edges' command (Process menu).

Figure $\mathbf{1} \mathbf{3 . 2 2}$

Two examples for D mapping. (a) SEM micrographs of experimentally produced fault at two different magnifications; (b) matrix density maps; size of Gauss filter is indicated by yellow circle; (c) color-coded matrix density maps; average matrix content is indicated; (d) D maps using LUT3 for a cut-off matrix grain size of $L_{m}=I / 8$; average fractal dimension, $D_{2 d}$, of grain size distribution is indicated.

d

D map of natural fault rock.
(a) Thin section of natural fault rock taken from low angle detachment fault, $\mathrm{F}=$ trace of (horizontal) fault surface;
(b) bitmap of (a); average density indicated;
(c) matrix density map; histogram on right; size of Gauss filter indicated by yellow circle;
(d) matrix density profile of (c), averaged over image height;
(e) D map of (c) using LUT2 ($L_{m}=1 / 4$); color coding on right; average fractal dimension indicated;
(f) D profile of (e), averaged over image height; range of values ($1.60 \leq \mathrm{D}_{2 \mathrm{~d}} \leq \mathrm{I} .80$) is highlighted.

