Figure 13.1

Self-similarity at various scales

Various types of fault rock, shown at increasing magnifications:

(@) shown in outcrop; (b) same as (a) in thin section; (c) thin section with angular (in-situ) fragments; (d) same as (c) with
angular (in-situ) and rounded (dislocated) fragments; (e) SEM micrograph with (dislocated) angular fragments.



Figure 13.2

Fragmentation of a cube.

Fragmentation of the cube produces 8 cubes (F = 8) of 1/2 the width of the original.

(a) Example of a cube where, at each scale, 2 out of 8 cubes remain unfragmented (N = 2), while 6 are fragmented
further;

(b) front view of cube (a): the fragmentation fraction,f = (F-N)/F=6/8;

(c) front view of a cube with f=4/8;

(d) front view of a cube withf=1/8.



Figure 13.3

Two conceptual models for grain size determination.
(a) Stereological model: particles are diluted in matrix;
(b) fractal model: fragments are densely packed.
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Fractal dimension of grain size distribution created by fragmenting a cube.

Fragmentation number, F is 8 (as in Figure 13.2), fragmentation fractions, f, range from 1/8 to 7/8.
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() Log(N)-log(r) plot, where N = number and R = size of fragments, the slope, D34, is the fractal dimension of the size

distribution of 3-D grains;

(b) log(N)-log(r) plot where N = number and r = size of cross sections of fragments, the slope, D24, is the fractal

dimension of the size distribution of 2-D grains;

(c) log(V)-log(r) plot whereV = volume and R = size of fragments, E = D34 - 3.



Figure 13.5

Higher fragmentation numbers.

Front views of cubes with different fragmentation numbers, F, and different fragmentation fractions, f.
The cube is fragmented into:

(@F=2-2-2=8N=2f=6/8;

(b) F=3 -3 -3=27,N=3,f=24/127,

(c)F=4 -4 -4=64N=4,f{=60/64.
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Figure 13.6
Fractal dimensions for different fragmentations.
Plots of fractal dimension, D34, versus number of crushed fragments, for different fragmentation numbers, F.
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Figure 13.7

Fractal dimension for continuous fragmentation fraction, f.
Fragmentation number, F = 8.

(a) Discrete fragmentation fraction,f = (F- Ni) / Ffori =1 to §;
(b) same plot as (a) for continuously defined f: (0.00 <f < 1.00).
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Figure 13.8

Fractal dimension for continuously defined fragmentation numbers and fragmentation fractions.
(@) D34 for fragmentation numbers F > 8;

(b) D34 for fragmentation numbers F < 8;

(c) D24 for fragmentation numbers F > 8, note that D¢ = D3q -1;

(d) D24 for fragmentation numbers F < 8, note that Dag = D34 -1.

Plots (c) and (d) correspond to region framed in (a) and (b).
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Figure 13.9

Fractal dimensions from different fragmentation processes.

Iso-lines of fractal dimension, D34, for varying fragmentation numbers, N, and fragmentation fractions, f.
(@) Curves of D3q for (0% <f < 100%) and (0 < F < 125);

(b) expanded view of plot indicated by rectangle in (a) for (50% <f < 100%) and (0 < F < 8).
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Figure 13.10

Concept of fragmentation matrix.

Area fraction of fragmentation matrix is defined by matrix length scale, Lin;

Lm = g/ G where g = largest grain in matrix and G = largest grain present in image.
(@) Lm = 1 / 32 and matrix content = 23.7 %;

(b) Lm = | /16 and matrix content = 31.6 %;

(c) Lm = 1/ 8 and matrix content = 42.2 %.
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Figure 13.11
Apparent matrix content and fractal dimension.
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(@) Cumulative volume, 2V, is shown as function of log(R) for different D34 (compare Figure |3.4.c); fragmentation
number F = 8, f = fragmentation fraction, R = size of fragments, D34 = fractal dimension of the size distribution of 3-D

grains;

(b) matrix contents, m%, is shown as functions of D4 for different matrix lengths scales, Li; the fractal dimension (0.00 <

D24 < 2.00);

(c) matrix-D diagram showing fractal dimension (0.00 < D24 < 2.00) versus matrix content for a range of matrix lengths

scales, L, =

1732, 1/16, 1/8, 1/4 and 1/2 (for L see Figure 13.10).
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Figure 13.12

Deriving the fractal dimension from the matrix content.

(@) SEM micrograph of fault rock at increasing magnification;

(b) bitmaps of (a), area percentage of matrix indicated;

(c) matrix-D diagram (see Figure 13.11) with matrix data for samples | to 5; matrix length scale, L, = /16 for |,2, L =
|/8 for 3,4,and Ly, > 1/4 for 5;

(d) log(N)-log(R) plot constructed from D-values (slopes) of areas | to 5.
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Figure 13.13

Local variation of the fractal dimension.

(a) SEM micrograph of experimentally produced cataclastic shear zone (displacement vertical, shear sense indicated,
sample courtesy Nynke Keulen);

(b) bitmap of (a), 5 sites are indicated;

(c) matrix-D diagram (see Figure 13.11) with matrix data for sites | to 5; blue = data for entire bitmap; matrix length
scale, L, = |/8 for entire image, Lm = 1/4 for areas | to 5.
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Figure 13.14

Non-fractal size distribution.

(a) Bitmap of experimentally produced cataclastic shear zone (Figure 13.13);

(b) grain size analysis of fragmented part;

(c) grain size analysis of part with mature gouge;

r = size, N = number of fragments, total number indicated; D = negative slope of line fit.
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Figure 13.15

Fractal dimension from measured matrix content and D-value from measured grain size analysis.

(a) Matrix contents as functions of D, expanded version of plot shown in Figure 13.11.b; black symbols are measured data
points for cracked and gouge material;

(b) expanded matrix-D diagram (see Figure 13.11.c); same data points as in Figure 13.15.3; note D > 2 for gouge.

Lines denote matrix lengths scales L, = 1/32, 1/16, 1/8, 1/4 and 1/2 (see Figure 13.11.c);

pink and gray shaded areas outline range of matrix%- and D- values separating cracked from gouge material.
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Figure 13.16

Mapping fractal dimensions of grain size distributions.

(@) The Lazy D map menu;

(b) step |: creating matrix density maps: 63 - 63 Gauss filter kernel shown as brightness image;

(c) step Il: converting to fractal dimension: look-up tables LUT | to LUTS5 for matrix length scales, Lm, from 1/2 to 1/32
(d) step lll: using color LUTs to visualize (example from left to right: 10 colors for 0-100% matrix, 20 steps with red line
at 50% and yellow strip at 80%).
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Figure 13.17

Creating look-up tables from matrix-D diagrams.

Matrix density (0% to 100%) is converted to index (0 to 255), fractal dimension, D24, to gray value, GV, (0 to 255).
() and (c) for (0.00 < D4 < 2.00); matrix lengths scales, L, are indicated.

(b) and (d) for (1.00 < D24 < 2.00); name of LUT indicated.
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Figure 13.18

Preparing the bitmap.

Pre-processing by rolling ball background subtraction with decreasing radius, by enhancing, and bicubic smoothing (top to
bottom).

(a) Grayscale images, radius of rolling ball indicated;

(b) histogram with threshold level indicated;

(c) resulting bitmap, average area fraction of matrix indicated; arrows point to areas where matrix is underestimated.
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Figure 13.19

Creating matrix density maps by Gauss convolution..

Matrix density images are calculated by de-magnifying image proportional to 63 - 63 Gauss filter kernel (maximum filter
size for Image SXM), (2) convolving, and (3) re-magnifying to original size.

() Original bitmap, average gray value = 164, corresponding to matrix density of 65 %;

(b) to (e) matrix density images, the corresponding filter diameters are indicated; note that range in histograms
decreases while average matrix density remains constant (65 %).
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Figure 13.20

Visualizing matrix density maps.

() Scaled matrix density map, diameter of Gauss filter = 200 pixels;

(b) same as (a) seen with 20 gray levels, 50% and 65% contour are indicated in red and yellow, respectively;
(c) color coding of matrix content, lower cut-off = 10% (white), upper cut-off = 90% (black).
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Figure 13.21

Converting matrix density to fractal dimension.

() Scaled map of fractal dimension (D map) obtained by applying LUT3 (for Lm = 1/8) to matrix density image (Gauss
filter d = 200 pixels); average D24 = 1.76; LUT shown in upper left corner;

(b) same as (a) after stretching gray values to (1.00 < Dyg4 < 2.00);

(c) same as (a) after cropping to D24 < 1.8;

for comparison, (a) and (b) shown with 20 gray levels;

(d) same as (a) using 'Fire-2' LUT of Image SXM and setting LUT options to 20 colors;

(e) same as (c), after applying command [E] of the Lazy D map macro a second time (1.50 < D24 < 2.00), filling the white
area with black, setting LUT options to 10 colors and applying LUT;

(f) contour map obtained from (e) using 'Find Edges' command (Process menu).
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Figure 13.22
Two examples for D mapping. (a) SEM micrographs of experimentally produced fault at two different magnifications; (b)

matrix density maps; size of Gauss filter is indicated by yellow circle; (c) color-coded matrix density maps; average matrix
content is indicated; (d) D maps using LUT3 for a cut-off matrix grain size of L, = 1/8; average fractal dimension, D24, of

grain size distribution is indicated.
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Figure 13.23

D map of natural fault rock.

(@) Thin section of natural fault rock taken from low angle detachment fault, F = trace of (horizontal) fault surface;
(b) bitmap of (a); average density indicated;

(c) matrix density map; histogram on right; size of Gauss filter indicated by yellow circle;

(d) matrix density profile of (c), averaged over image height;

(e) D map of (c) using LUT2 (Lw = 1/4); color coding on right; average fractal dimension indicated;

(f) D profile of (e), averaged over image height; range of values (1.60 < D24 < 1.80) is highlighted.



