

Length of projection of a single line segment. $P(\alpha)$ depends on the length and orientation of the line segment.

Projection curves, $A(\alpha)$, of sets of lines.

The projection curves of the individual lines (labeled 1 to 6) are shown as cumulative plots.

(a) Parallel lines: orientation distribution function (ODF) = delta function: $h(\alpha_i) = \infty$ if $\alpha_i = 0^\circ$; fabric as a whole has same anisotropy as individual lines;

(b) lines with preferred orientation: ODF = normal distribution: $h(\alpha_i) = 30^\circ \pm 10^\circ$; fabric as a whole is less anisotropic than individual lines;

(c) randomly oriented lines: ODF = uniform distribution; fabric as a whole is isotropic.

hand digi 474	of bitmap ps.tif
19.0000	725.0000
63,0000	715.0000
9999,0000	9999,0000
68,0000	724,0000
76,0000	739,0000
9999,0000	9999,0000
69,0000	710,0000
	. 2010000
e	tc.
9999.0000	9999.0000
699.0000	79.0000
732.0000	67.0000
9999.0000	9999.0000
266.0000	59.0000
277.0000	60.0000
9999.0000	9999.0000
283.0000	56.0000
287.0000	45.0000
9999.0000	9999.0000

Input file ps.dig.scm with x-y coordinates of line segments; plot of file.

```
*** surfor ***
                                             2010-11-08, rh
 analysis of bulk surface fabric
 (open or closed outlines)
 input file:
   line 1:
                      bti
                                   title (must have)
   line 2:
                                   total number of points
                      n
   line 3 ff.:
                                  floating x-y coordinates
                      х,у
                                  ...etc.
      (optional) Xend, Yend end coordinates
 number of points and particles is unlimited
name of input file >
ps.dig.scm
 end coordinates in input (0.000, 9999, ... one number) >
9999
do you want printout (0), file (1), both (2) ? >
1
increment of rotation angle (minimum = 1 deg.) >
10
name of output file ? [ps.dig.s10] (return=default) >
name of file with A(alfa) curve ? [ps.dig.i10] >
 name of file with surface ODF ? [ps.dig.r10] >
name of file with characteristic shape? [ps.dig.c10] >
```

2

3

4

5

6

7

8

Dialog with program SURFOR; answers are numbered and highlighted, see text for explanation.

10°	5°	۱°	file type
file.s10	file.s05	file.s01	screen output
file.c10	file.c05	file.c05	characteristic shape
file.i10	file.i05	file.i05	A(α) curve
file.r10	file.r05	file.r05	ODF of line segments

Table 15.1

Default name extensions used for result files created by the SURFOR program. For angular resolutions of 10° , 5° and 1° .

	surfor analysis o	of ps.dig.scm				
1	A(alfa)min = Alfamin = Bulk b/a = Angular differend (diff < 90 deg =	48.049 90.0 0.63 ce = 90.0 dextral monocli	A(alfa)ma Alfamax = 3674 Inic)	ax = 75 = 180	5.461 0.0	
	Preferred oriento Preferred oriento	ation (of LA1) a ation (of LA2) a	alfap1 = 0. alfap2 = 0.			
		A(alfa Alfami Bulk b Angula (diff Prefer)min = 4 n = 9 /a = r difference = < 90 deg = dextr red orientation	7.972 3.0 0.63555 88.0 al monoclinic (of LA1) alfa	A(alfa)max = Alfamax =) p1 = 179.	75.481 1.0
		Prefer	red orientation	(of LA2) alfa	p2 = -3.	
2	number of project	ted line segment	s: 158 150 where 8 where	delta x > 0 delta x < 0		
	total length of p	projected line s	segments, a(alpho	a):		
	angle toto	al mean	variance	st.dev.	skewness	
	20 3243 188	21.3251	181.52255	13.47303	19.84093 20 32314	
	30 3060.173	358 19.36819	188.57220	13.73216	22.56540	
	40 2851.982	218 18.05052	2 179.71555	13.40580	26.33520	
	50 2674.605	596 16.92789) 155.02504	12.45090	33.72395	
	60 2489.104	498 15.75383	3 131.44009	11.46473	36.71122	
	70 2341.699	922 14.82088	3 107.45545	10.36607	37.33000	
	80 2229.430	018 14.11032	91.31422	9.55585	32.75957	
	90 2168.079	959 13.72202	85.66262	9.25541	27.05326	
	100 2186.563	372 13.83901	L 88.18482	9.39068	27.74048	
	110 2303.299	956 14.57785	5 94.42200	9.71710	35.46484	
	120 2442.610		b 113.43501	10.65059	33.61173	
	130 2621.445	16.5914		11.63558	29.00960	
		042 17.8429		12.49892	23.43901	
		520 19.01173	179.08134	13.23184	16.01722	
	170 3346 212	297 20.23000 240 21 17850	170.59950	13.30411	17 35884	
	180 340.212	240 21.17630 533 21 55041	177.01300	13.30473	18 83508	
	100 5404.90	JJJ 21.JJ07.	L 177.55025	13.32030	10.03300	
3	histogram: total 0 	length of proje	ection A(alpha) length units	versus angle a	of rotation 3405	
	10 ::::			• • * * * * * * * * * * * * * * *	****	
	20 :::::	• • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	• • • • * * * * * * * * * * * * * * * *	****	
	20 10 ····	•••••	· · · · · · · · · · · · · · · · · · ·	• • • • • * * * * * * * * * * * * *	**	
	50	••••••	•••••••	•• *****		
	60 ::::		••••****	****		
	70 ::::			****		
	80 ::::		•••••	****		
	90 ::::		•••••	***		
	100 :::::		•••••	***		
	110 ::::		•••••	****		
	120 ::::		•••••	****		
	130 ::::			*****		
	140 :::::		******************	*****	K Kala ala ala	
	150 :::::			• * * * * * * * * * * * * * * * * * * *	~	
	160 :::::			• • * * * * * * * * * * * * * * * * * *	• • • • • • • • • • • • • • • • • • •	
	1/0 ::::	· · · · · · · · · · · · · · · · · · ·		• • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	
	180 ::::			• • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • •	

SURFOR output file ps.dig.s10:

(1) calculation of $A(\alpha)_{max}$, $A(\alpha)_{min}$, α_{max} and α_{min} for 10° increments; angular difference is between α_{max} and α_{min} ; inset: output file ps.dig.s10: calculation of $A(\alpha)_{max}$, $A(\alpha)_{min}$, α_{max} and α_{min} for 1° increments;

(2) length of projection, $A(\alpha)$, list of values;

(3) total length of projection and standard deviation, shown as histogram: (stars) = total length; (colons) = standard deviation as fraction of total length.

1	angle	relative_length_of_p	projection	ps.	dig.i10					
-	10	1.00000		1.0	<u></u>					
	20	0.95933							×	
	20	0 80874			 				×	
	10	0 83760		0.8 -	~				×	
	40 50	0.03700						~		
	50	0.70330				n.	-			
	70	0.75102		0.6				8		
	0	0.00775		0.07						
	00	0.03470								
	90	0.03074		0.4						
	110	0.04217		0.4 -						
	120	0.07045								
	120	0.71737								
	130	0.76989		0.2 -						
	140	0.82796								
	150	0.88220								
	160	0.93996		0.0						
	1/0	0.98274		0.0	30	60	00	120	150	100
	180	1.00000		0	50	00	90	120	150	100
-							angle			
2	angLe	relative_length_of_p	projection	α =						
_		0.00074								
	0	0.99974		Villax						
		0.99974 1.00000		1.0 -	•					
	0 1 2	0.99974 1.00000 0.99994		1.0	<u> </u>					
	0 1 2 3	0.99974 1.00000 0.99994 0.99958		1.0	-					
	0 1 2 3 4	0.99974 1.00000 0.99994 0.99958 0.99892			-					
	0 1 2 3 4 	0.99974 1.00000 0.99994 0.99958 0.99892		1.0 0.8 -	-					
	0 1 2 3 4 	0.99974 1.00000 0.99994 0.99958 0.99892		1.0 0.8 -	-					
	0 1 2 3 4 91	0.99974 1.00000 0.99994 0.99958 0.99892 0.63610 0.63610		1.0 0.8 -						
	0 1 2 3 4 91 92 02	0.99974 1.00000 0.99994 0.99958 0.99892 0.63610 0.63570 0.63570		1.0 0.8 - 0.6 -						
	0 1 2 3 4 91 92 93 04	0.99974 1.00000 0.99994 0.999958 0.99892 0.63610 0.63570 0.63555 0.63555		1.0 0.8 - 0.6 -	- b/a =	.636				
	0 1 2 3 4 91 92 93 94 05	0.99974 1.00000 0.99994 0.999958 0.99892 0.63610 0.63570 0.63555 0.63589 0.63589 0.63642		1.0 0.8 - 0.6 -	b/a =	.636				
	0 1 2 3 4 91 92 93 94 95	0.99974 1.00000 0.99994 0.99958 0.99892 0.63570 0.63555 0.63589 0.63643		1.0 0.8 - 0.6 - 0.4 -	b/a =	.636				
	0 1 2 3 4 91 92 93 94 95	0.99974 1.00000 0.99994 0.99958 0.99892 0.63570 0.63555 0.63589 0.63643		1.0 0.8 - 0.6 - 0.4 -	b/a =	.636				
	0 1 2 3 4 91 92 93 94 95 	0.99974 1.00000 0.99994 0.999958 0.99892 0.63610 0.63570 0.63555 0.63589 0.63643		1.0 0.8 - 0.6 - 0.4 -	b/a =	.636				
	0 1 2 3 4 91 92 93 94 95 176	0.99974 1.00000 0.99994 0.999958 0.99892 0.63610 0.63570 0.63555 0.63589 0.63643 0.00612		1.0 0.8 - 0.6 - 0.4 - 0.2 -	b/a =	.636				
	0 1 2 3 4 91 92 93 94 95 176 177	0.99974 1.00000 0.99994 0.999958 0.99892 0.63610 0.63570 0.63555 0.63589 0.63643 0.99612 0.99748		1.0 0.8 - 0.6 - 0.4 - 0.2 -	b/a =	.636			= 93°	
	0 1 2 3 4 91 92 93 94 95 176 177	0.99974 1.00000 0.99994 0.999958 0.99892 0.63610 0.63570 0.63555 0.63589 0.63643 0.99612 0.99748 0.99748 0.99748 0.99748		1.0 0.8 - 0.6 - 0.4 - 0.2 -	b/a =	.636		αmin	= 93°	
	0 1 2 3 4 91 92 93 94 95 176 177 178	0.99974 1.00000 0.99994 0.99998 0.99892 0.63610 0.63570 0.63555 0.63589 0.63589 0.63643 0.99612 0.99748 0.99854 0.99854 0.99854		1.0 0.8 - 0.6 - 0.4 - 0.2 - 0.0	b/a =	.636		αmin	= 93°	
	0 1 2 3 4 91 92 93 94 95 176 177 178 179	0.99974 1.00000 0.99994 0.99998 0.99892 0.63610 0.63570 0.63555 0.63589 0.63643 0.99612 0.99748 0.99854 0.99854 0.99929 0.00074		1.0 0.8 - 0.6 - 0.4 - 0.2 - 0.0 -	$b/a = \frac{1}{30}$.636	90	C min 120	= 93°	180

SURFOR output files for different angular resolution: (1) ps.dig.i10: values of $A(\alpha)$ at 10° interval and plot; (2) ps.dig.i01:Values of $A(\alpha)$ at 1° interval and plot. Using 1° increments directly yields values of α_{min} , α_{max} and b/a.

a	ngle	length_of_s	rel.length_surface
-1	80.0	92.512	0.624
-1	77.5	0.000	0.000
-1	75.0	77.743	0.524
-1	72.5	0.000	0.000
-1	70.0	75.161	0.507
-1	67.5	0.000	0.000
-1	65.0	112.100	0.756
-1	62.5	0.000	0.000
-1	60.0	44.915	0.303
••	. etc	•	
16	0.0	46.180	0.311
16	2.5	0.000	0.000
16	5.0	75.557	0.509
16	7.5	0.000	0.000
17	0.0	148.349	1.000
17	2.5	0.000	0.000
17	5.0	118.942	0.802
17	7.5	0.000	0.000
18	0.0	92.512	0.624

Software Box 15.5 SURFOR output file ps.dig.r10: Length weighted orientation distribution of line segments and rose diagram (10° interval).

x	<pre>y_characteristic_shape</pre>
-7.1320318E-02	0.5742874
-9.5122874E-02	0.5738578
-9.5122874E-02	0.5738578
-0.1157482	0.5727649
-0.1369111	0.5712727
-0.1554190	0.5696427
-0.1770863	0.5673528
-0.1770863	0.5673528
0.1044288	0.5669345
8.4854394E-02	0.5690032
8.4854394E-02	0.5690032
4.8880663E-02	0.5715396
3.4096763E-03	0.5739493
3.4096763E-03	0.5739493
-1.8278193E-02	0.5743406
-7.1320318E-02	0.5742874

SURFOR output file ps.dig.c01:

X-Y coordinates of characteristic shape and plot with longest and shortest projection superposed.

b

Figure 15.3

Example of natural surface fabric: pressure solution contacts.

(a) Micrograph of oolithic limestone with pressure solution grain-to-grain contacts (same as Figure 14.4);

(b) grain-to-grain contacts digitized as straight line segments. (Sample courtesy Samuel Mock).

240

300

270

Figure 15.4

SURFOR and PAROR analysis of pressure solution contacts.

- (a) Grain-to-grain contacts are digitized as straight line segment;
- (b) ODF of line segments, evaluated with 1° , 5° and 10° intervals;
- (c) outlines of areas representing the grain-to-grain contacts;
- (d) ODF of long axes, LA_2 , of outlines, evaluated with 1°, 5° and 10° intervals.

ODF of long axis ellipse.x05

ODF of line segments ellipse.r05

Figure 15.5

Surface projection versus particle projection.

Surface projection, $A(\alpha) = \text{sum of projections of individual line segments; particle projection, }B(\alpha), = difference (x_{max} - x_{min})$ along outline. For fully convex particles, $A(\alpha) = 2 \cdot B(\alpha)$.

(a) boundary pixels of digitized area;

(b) vertices of approximating polygon;

(c) continuous outline of the original shape;

(d) PAROR rose diagram: ODF of long axis of ellipse;

(e) SURFOR rose diagram: ODF of line segments of outline.

90

60

120

Figure 15.6

- Comparison of SURFOR and PAROR analysis of sample CTI (CTI.apl.scm).
- Sample is from series of shearing experiments on marble by Schmid et al. (1987).
- (a) Scaled and smoothed outlines, as 'seen' by SURFOR;
- (b) convex hull of grains, as 'seen' by PAROR;
- (c) projection curve $A(\alpha)$ from SURFOR projections;
- (d) projection curve $B(\alpha)$ from PAROR projections;
- (e) rose diagrams of surface ODF from SURFOR (5° resolution);
- (f) rose diagrams of long axes ODF (LA₂) from PAROR (5° resolution).
- Superposed in (c) to (f) are the preferred orientations, α_{p1} (red) and α_{p2} (green), derived from α_{max} and α_{min} ; the exact values for b/a, α_{min} and α_{max} were derived from analyses made with 1° increment of rotation.

SURFOR	analysis of ct1.apl.scm	PAROR	analysis of ct1.apl.scm			
153°	$\alpha_{\rm max} { m of } A(\alpha) \qquad \Rightarrow \alpha_{\rm p1} = 27^{\circ}$	۱52°	α_{max} of $B(\alpha)$	$\Rightarrow \alpha_{p1} = 28^{\circ}$		
67°	$\alpha_{\min} \text{ of } A(\alpha) \qquad \Rightarrow \alpha_{p2} = 23^{\circ}$	66°	α_{min} of B(α)	$\Rightarrow \alpha_{p2} = 24^{\circ}$		
86°	$\Delta \alpha \text{ of } A(\alpha)$	86°	$\Delta \alpha$ of B(α)			
0.4333	$A(\alpha)_{min}$ / $A(\alpha)_{max}$ = $A(67^{\circ})$ / $A(153^{\circ}) \approx SA_1/LA_1$	0.4169	$B(\alpha)_{min}$ / $B(\alpha)_{max}$ = $B(66^{\circ})$ / $B(152^{\circ}) \approx SA_1/LA_1$			
0.9980	$A(67^{\circ} + 90^{\circ} = 157^{\circ})$	0.4232	$B(66^{\circ}+90^{\circ}=156^{\circ})$			
0.4368	$A(153^{\circ}-90^{\circ}=63^{\circ})$	0.9985	B(152°-90° = 62°)			
0.4342	$A(67^{\circ}) / A(157^{\circ}) \approx SA_1/LA_2$	0.4175	$B(66^{\circ}) / B(156^{\circ}) \approx SA_1/LA_2$			
0.4368	$A(63^{\circ}) / A(153^{\circ}) \approx SA_2/LA_1$	0.4232	$B(62^{\circ}) / B(152^{\circ}) \approx SA_2/LA_1$			
0.4376	$A(63^{\circ}) / A(157^{\circ}) \approx SA_2/LA_2$		$B(62^{\circ}) / B(156^{\circ}) \approx SA_2/LA_2$			
		0.3804	average SA1 of particles / average LA1			
		0.3856	average SA_1 of particles / average LA_2			
		0.4090	average SA ₂ of particles / average LA ₁			
		0.4146	average SA_2 of particles / average LA_2			
		0.3993	average SA1 / LA1 of particles			
		0.4080	average SA1 / LA2 of particles			
		0.4303	average SA ₂ / LA ₁ of particles			
		0.4402	average SA ₂ / LA ₂ of p	articles		

Table 15.2

Measures of orientation (blue) and anisotropy (yellow) obtained by SURFOR and PAROR analysis of CTI.

Characteristic shape and fabric ellipses.

Characteristic shape (file ct1.cor.c01 = 1° resolution) shown in black: the long axis (longest projection) has length $A(\alpha)_{max}$ and orientation α_L (= 180° - α_{max}); the short axis (shortest projection) has length $A(\alpha)_{min}$ and orientation α_L (= 180° - α_{max}); the short axis (shortest projection) has length $A(\alpha)_{min}$ and orientation α_L (= 180° - α_{min}); the axes are not orthogonal.

(a) Minimum ellipse (green) with axial ratio b/a = A(α)_{min} / A(α)_{max} and orientation α_{p1} = 180° - α_{max} ;

(b) maximum ellipse (red) with axial ratio b/a = A(α_{max} - 90°) / A(α_{min} + 90°) and orientation α_{p2} = 90° - α_{min} ;

(c) minimum ellipse (green) with axial ratio b/a = B(α)_{min} / B(α)_{max} and orientation α_{p1} = 180° - α_{max} ;

(d) maximum ellipse (red) with axial ratio b/a = B(α_{max} - 90°) / B(α_{min} + 90°) and orientation α_{p2} = 90° - α_{min} .

SURFOR and PAROR analysis of CT6.

Sample is from series of shearing experiments on marble by Schmid et al. (1987).

(a) CT6closed = closed outlines only; CT6open = open and closed outlines; three sections of the shear zone have been stacked; the shear zone boundaries are indicated by stippled lines;

(b) PAROR analysis: $B(\alpha)$ curve;

(c) SURFOR analysis: $A(\alpha)$ curve;

(d) SURFOR analysis: ODF of line segments;

(e) SURFOR analysis: characteristic shape.

Stylolithic surface in oolithic limestone.

(a) Polished surface;

(b) trace of stylolite; double arrow indicates the overall orientation of the stylolite, S, and the compaction direction, d;

(c) convex hull of stylolite; stylolite represented by boundary pixels (red outline) or manually digitized (black line);

(d) SURFOR analysis of stylolithic surface; (e) PAROR analysis of stylolithic surface.

Replacing SURFOR analysis using the autocorrelation function (ACF).

(a) Bitmap of outlines (4096 · 4096 pixels) with enlarged detail of sample CTI;

(b) center of ACF; enlarged 8 times with respect to to (a);

(c) representation of (b) using 10 gray values only;

(d) contoured version of (b), contours at 10%, 20%, ... of ACF_{max} .

a

b

Figure 15.11

SURFOR and ACF analysis of CT1.

(a) Grain map (4096 · 4096 pixels); grain boundaries are 5 pixels wide;

(b) SURFOR rose diagram drawn as bar plot of relative length of line segments (1° interval);

(c) SURFOR rose diagram drawn as line plot of relative length of line segments (10° interval);

(d) ACF scaled such that the the 10% contour touches the superposed circle.