

Figure $\mathbf{1 8 . 1}$
Spatially dispersed mineral grains.
(a) Micrograph of quartz-feldspar mylonite in cathodo-luminescence contrast (image courtesy Sina Marti): light blue $=\mathrm{K}$ -
feldspar; pink = plagioclase, black = quartz;
(b) micrograph of eclogite (image courtesy James MacKenzie), cross polarized light, showing dispersed (top) and clustered (bottom) garnet grains in black.

Figure $\mathbf{1 8 . 2}$
Concept of spatially dispersed center points.
(a) Random distribution of points in plane (Poisson distribution);
(b) anti-correlated distribution of points ($\mathrm{d}_{\mathrm{c}}=$ minimal distance between points);
(c) same as (b) with anisotropic correlation length, $\mathrm{d}_{\mathrm{c}}=\mathrm{d}_{\mathrm{c}}(\alpha)$, where $\alpha=$ angle with horizontal direction;
(d) clustered distribution of points.

Figure $\mathbf{1 8 . 3}$
Chess board model for spatial distribution of phases.
Type distribution of phases (black, white) are shown, without boundaries (top), with boundaries (bottom):
(a) perfectly ordered (= anti-clustered) distribution;
(b) random distribution;
(c) perfectly clustered distribution of phases.

C

Figure I 8.4
Phases, boundaries and contacts.
Six grains with two phases, A and B, are shown.
(a) White areas = phase A; black areas = phase B;
(b) $L_{A}=$ grain boundaries of phase $A ; L_{B}=$ grain boundaries of phase B;
(c) $S_{A A}=$ contact surfaces of phase A with phase $A ; S_{B B}=$ contact surfaces of phase B with phase $B ; S_{A B}=$ contact surfaces of phase A with phase B.

(a) Possible contact surfaces for phase $A: S_{A A}$ and $S_{A B}$;
(b) possible contact surfaces for phase B : $S_{B B}$ and $S_{B A}\left(=S_{A B}\right)$.

Figure $\mathbf{1} 8.6$

Binomial distribution.
Probabilities of contact types, $A-A, B-B$ or $A-B$, for random mixing of phases A and B are shown for varying percentages of A or B. If measured proportions of $A-A$ or $B-B$ are higher than the theoretical values for $P A A$ or $P_{B B}$, respectively, the spatial distribution is clustered; if measured proportions of $A-B$ are higher than the theoretical values for PAB the spatial distribution is ordered (anti-clustered).

random

ordered

clustered

highly clustered

area fraction $\mathrm{B}(\%)$

area fraction $B(\%)$
$10090 \quad 80 \quad 70 \quad 60 \quad 50 \quad 40 \quad 30 \quad 20 \quad 10 \quad 0$
 area fraction $B(\%)$
009080706050403020100
 area fraction $\mathrm{A}(\%)$
area fraction $B(\%)$

Figure I8.8

Spatial distributions and contact probabilities.
(a) Random distribution;
(b) ordered distribution;
(c) clustered distribution;
(d) highly clustered distribution.

Left: mosaic showing gb = all grain boundaries, $A=$ phase map of $A, B=$ phase map of $B, A A=$ contact surfaces between A
and $A, B B=$ contact surfaces between B and $B, A B=$ contact surfaces between A and B.
Right: curves PAA, PBB and PAB of probabilities of $A-A, B-B$ and $A-B$ contacts, respectively, for a random distribution of phases; measured values of $A A, B B$ and $A B$ are plotted against area fraction of phases, phase boundaries $(A B)$ are highlighted in red. Note that $A A+B B+A B=1.00$.

\square
unidentified
\square
garnet
$\square \square$
omphacite
$\square \square$
quartz

\bigcirc
unidentified
garnet
quartz

unidentified garnet omphacite quartz

Figure $\mathbf{1 8 . 9}$

Segmentation of eclogite.
(a) Original SEM micrograph of eclogite, BSE contrast;
(b) bitmap showing 4 mineral phases and grain boundaries;
(c) color version of (b).

Figure 18.10
Deriving phase and grain boundaries.
Procedure is shown for omphacite (= phase A, green in Figure I8.9).
(a) Grain boundary map of entire fabric;
(b) grain map of phase A;
(c) coherent areas of phase A aggregate, obtained by dilating (b);
(d) outlines of phase A grains, using 'Outline' command (Process > Binary menu);
(e) outlines of phase A aggregates, obtained from (c);
(f) A-A contacts, obtained by AND-adding grain boundaries (a) and phase map A (c);
(g) vertical parts of A-A contacts, obtained by AND-adding a copy of (f) onto itself and shifting vertically;
(h) horizontal parts of A-A grain boundaries, obtained by AND-adding a copy of (f) onto itself and shifting horizontally.

Figure I8.1 I
Distribution of garnet in eclogite.
(a) SEM micrograph: light gray = garnet, medium gray = omphacite, dark gray = quartz.
(b) phase map of eclogite: red = garnet, green = omphacite, blue = quartz, brown = rest, black = boundaries (map by James MacKenzie);
(c) reduced phase map: red = garnet, gray = all others;
(d) map of all boundaries;
(e) map of garnet boundaries;
(f) map of all non-garnet boundaries;
insets show enlarged sites.

Figure 18.12
Analysis of distribution of garnet in eclogite.
Phase map shown in Figure I8.1I.
(a) Mosaic showing $\mathrm{gb}=\mathrm{all}$ grain boundaries, $\mathrm{A}=$ phase map of garnet, $\mathrm{B}=$ phase map of all others, $\mathrm{AA}=$ contact surfaces between garnet and garnet, $\mathrm{BB}=$ contact surfaces among all others, $\mathrm{AB}=$ contact surfaces between garnet and any other.
(b) plot of theoretical values PAA, PBB and PAB for a random distribution of phases; measured values for (a) are inserted as functions of volume fractions (= area fractions) of phases;
(c) same as (b), measured values are plotted as functions of surface fractions (= length fractions) of boundaries.

Figure 18.13
Distribution of garnet and omphacite in eclogite.
(a) Phase map of eclogite: red = garnet, green = omphacite, blue = quartz, brown = rest, black = boundaries (map by James MacKenzie);
(b) reduced phase map: red = garnet, green = omphacite, black = boundaries + quartz + rest;
(c) map of all garnet and omphacite boundaries;
(d) map of garnet boundaries;
(e) map of omphacite boundaries;
insets show enlarged sites.

Figure 18.14
Analysis of distribution of garnet and omphacite in eclogite Phase map shown in Figure 18.13.
(a) Mosaic showing $g b=$ all grain boundaries + quartz + rest, $A=$ phase map of garnet, $B=$ phase map of omphacite, $A A$ $=$ contact surfaces between garnet and garnet, $\mathrm{BB}=$ contact surfaces between omphacite and omphacite, $\mathrm{AB}=$ contact surfaces between garnet and omphacite.
(b) plot of theoretical values PAA, PBB and PAB for a random distribution of phases; measured values for (a) are inserted as functions of volume fractions (= area fractions) of phases;
(c) same as (b), measured values are plotted as functions of surface fractions (= length fractions) of boundaries.

Figure 18.15
Preparing random spatial distributions of random phases.
(a) Section of 3-DVoronoi tessellation (software for numerical simulation by Hugo Ledoux, maps prepared by James MacKenzie);
(b) red channel of (a) showing random distribution of gray values (random phases);
(c) grain boundary map of (b).

I:3
25 \%
75 \%

Figure 18.16

Random phase distributions.

Applying special LUTs to a random phase maps (such as Figure I5.b), different fractions of red and green phase are created. Four examples with different phase ratios are shown; LUTs are shown on the right. Note that the grain boundary map is the same in all four examples.
content $\mathrm{B}(\%)$

Figure 18.17
Influence of sample size.
(a) Curves of theoretical values PAA, PBB and PAB for a random distribution of phases; measured values of numerical simulations (Figure 18.16) are plotted, sample size $=380$;
(b) same as (a) using a samples size $=1520$;
numerical simulations by Hugo Ledoux, analyses by James MacKenzie.

C

content $\mathrm{B}(\%)$

Figure 18.18
Influence of orientation on random distribution.
(a) Evaluation of contact surfaces for random spatial distribution (Figure I8.8.a);
(b) evaluation of horizontal surface fraction;
(c) evaluation of vertical surface fraction.

C

content $\mathrm{B}(\%)$

Figure I8.19

Influence of orientation on clustered distribution.
(a) Evaluation of contact surfaces for clustered spatial distribution (Figure I8.8.c);
(b) evaluation of horizontal surface fraction;
(c) evaluation of vertical surface fraction.

