

NOTE: change of title! NOTE: quote Henk Zwart

THANKS go to presidents of TecTask now IASTG - Enrique Gomez-Rivas, Manish Mamtani, THANKS go to members of the DRT organizing committee - Eugenio, Rosalda, Gaetano

... and the use of image analysis

2
how can we best quantify texture and grain size?
this talk will be about how I got close ...
... or not so close ... to answering these questions
... over the last 50 years

3 Talk

1. pre-computer time
2. to early image analysis (vector graphics, tablets)
3. to beginning of true digital image analysis (raster graphics)
4. 3D grainsize
5. CIP meets EBSD
6. about gs
(7. about texture) - this was actually canceled because of time

A look into my photo album shows my 'direct' road to geology (...)

stereology and point counting ...

... or how to go from 2D to 3D
find volume density:
Achille Ernest Oscar Joseph Delesse (1817-1881)
$V V=A A$
August Karl Rosiwal
(1860-1923)

$$
V V=A A=L L
$$

Andrei Aleksandrovich Glagole (1894-1969)
$\mathrm{V} V=\mathrm{AA}=\mathrm{LL}=\mathrm{PP}$

All geologists:

F: Delesse: oily paper - tracing - weighing
GB: Sorby: microscope, camera lucida (Amateur naturalist, founder of metallurgy (?) (1826-1908)
AU: Rosiwal: linear approx. - linear intercept

Newton, 1967 (sic!)
Georges-Louis Leclerc Comte de Buffon (17071788)

Blaise Pascal, (1623-1662)
Pierre Simon Marquis de Laplace (1745-1827)
Augustin-Louis Cauchy (1789-1857)
Joseph Emile Barbier (1839-1889)
Sarkis Andreevich Saltykov (1906-)
... stereological theorems

... still no computer involved
John Graham Ramsay CBE FRS (17 June 1931

- 12 January 2021), British structural geologist

Ramsay \& Huber, Fig 5.1 R\&H showing
Cambrian quartzite with cross sectional areas of deformed worm tubes.
NOTE shape \neq spheres but cylinders !!!

... still no computer involved
Bruno Sander (1884-1979) Austrian geologist
Outlines (segmentation) -> mapping (colouring c-axis orientation)
Pole figure is not localized - thermodynamic concept
Procedure:

1. trace boundaries
2. measure CPO on U-stage
3. color stereoplot
4. color grains

Students and assistants who had to make AVAs called the microscope the "Verblödungsröhre" they hated it.

10
seventies and early eighties
1977 Apple II BASIC
1979 Apple tablet
1984 Apple Macintosh Pascal
1987 NIH Image (Pascal)
1993 Image SXM (Pascal)
1997 Image J (Java)
$2007 \rightarrow$ Fiji ('Fiji is just ImageJ')
putting the curve on the grid

polygonal outline (polyline) defined by:

try again

polygonal outline (polyline) defined by:

small data sets - huge computers ...

Early 70's - around and after Apollo 13 (1970)

Schmid, S.M., Panozzo, R. and Bauer, S. (1987) The strain (Rs) is ver difficult to estimate especially with the small number of grains available here. Contours are only eye-balled here.
.. to SURFOR ... when outlines counted

closed outtines only $700^{\circ} \mathrm{C}$ - high strain

open and closed outlines

Making use of all grain boundary surface - not only of closed outlines.

time moves on ...

Wayne Rasband

types of image analysis

modified after Heilbronner, R. and Barrett, S. (2014). Image Analysis in Earth Sciences Microstructures and Textures of Earth Materials. Springer Verlag, Heidelberg, 520 p. ISBN: 978-3-642-10342-1 (Print) 978-3-642-10343-8 (Online)

18

1987 NIH Image (Pascal) 1997 Image J (Java)
$2007 \rightarrow$ Fiji ('Fiji is just ImageJ')
1993 Image SXM (Pascal)

With the advent of 'full-scale' digital image analysis, the expectation was that manual outlining could be replaced by automatic segmentation. And that this would open up a number of types of image analysis. 1) looking at connected pixels and boundary pixels, 2) reducing the data to best fit ellipses, 3) deriving polygonal outlines that can be used in the same way as manually digitized outlines.
image processing vs. image analysis
As all participants of my workshops know very well, segmentation is always a big effort. In the context of research where the image material is never the same (as might be in undustrial screening, for example) segmentation remains a challenge. There is no such thing as unbiased, automatic segmentaion.

22
CIP is basically an image processing method which transforms a stack of special input images to an orientation image (image to image). The azimuth and inclination plane provide input for a c-axis pole figure, the first 'analysis' step - in the sense of image to number(s).
Orientation images are an excellent basis for segmentation because the threshold can be given in terms of degrees of (mis)orientation. Still, preprocessing is necessary and at almost every step of the process, decisions have to be taken. In addition to visual inspection (for closing outlines, for example) there is a physical basis for the decision (degree of misorientation at the boundary, for example)

EUG-VI 1991 - CIP is launched:
CIP = easy AVA procedure = pole figures without U-stage
the first pole figures ... still looked a bit funny

NOTE:
3D grain size distribution has a range of grain size from dmin>0 to dmax
2D grain size distribution always has dmin approaching 0 NOTE:
The 2D distribution can always be calculated, no matter if it is mondosiperse, normal, lognormal, bimodal etc.... - the reverse is always impossible.

the effect of using 3D vs. 2D means

STRIPSTAR
calculates the mode of the volume weighted 3D diameters

The prevalence - by area - of orange colours indicates that
$\Rightarrow 3 \mathrm{D}$ mode is closer to the representative grain size
The mean 2D grain size - green colour - is not as prevalent
Blue and green section do not represent small 3D grains, but are sections of larger grains (see absence of small grain in 3D histogram.

30
2002 shearing \& annealing in regimes 1, 2, 3 - high strain
regime 1 - BLG - bulging rexl

- low T - high strain rate
regime 2 - SGR - subgrain rotation rexl
- med T - med strain rate
regime 3 - GBM - grain boundary migration rexl
- high T - low strain rate
... of Black Hills Quartzite (BHQ)

Heilbronner, R. and Tullis, , (2006) JGR

shearing
in regime 3 only
to high strains

mode $D(\mu \mathrm{~m})$	
undef.	99 ± 12
reg. 3	15 ± 10

312006 shearing in regime 3-low to high strain QUESTIONS changing polfig ? changing grain size with gamma?

in the meantime, CIP meets EBSD ...

Bambi Meets Godzilla is a 1969 black-and-white animated short student film created entirely by Marv Newland. Less than two minutes long, the film is a classic of animation; it was listed \#38 in the book The 50 Greatest Cartoons (1994). See Wikipedia, YouTube.

COI (showing axis orientation) is more easily interpreted than Euler or IPF coloured maps (showing full crystal orientation)

34
EBSD: Obvious improvement of spatial (and orientational) resolution !!
Left: original CIP image, right: EBSD image recalculated for CIP colouring

Left: original CIP image using the Positive CLUT, right: EBSD image recalculated for Positive colouring.
=> 'optical polarization microscopy' at EBSD resolution

NOTE:

For resolution up to $10 \mu \mathrm{~m}$ CIP and EBSD coincide
CIP pole figure $=$ EBSD pole figure $====>$ note double Y max (\neq an artefact of CIP) NOTE:
Increasing strain influences polfig:
compare columns at right: both regime 3, left low strain, right high strain (= motivation for 2006 paper)

38
RMS instead of mean, following Stipp\&Tullis who selected 2D RMS over 2D mean NOTE:
Segmentation is always difficult and never unbiased !!
grain size distributions as $f($ procedure)

Other options: polynomial fit, requires 'eyeballing' to determine mode.

IMPORTANT:
do not ever use 'correction factors'

42
NOTE: grain size gradient in regime 2 experiment

see Heilbronner and Barrett, (2014)

See Heilbronner, R. \& Kilian, R. (2017). The grain size(s) of Black Hills Quartzite deformed in the dislocation creep regime. Solid Earth, 8,
1071-1093, 2017, doi.org/10.5194/
se-8-1071-2017.
NOTE:
area weighting of $2 \mathrm{D} \neq$ volume weighting of 3 D
the quartz piezometer(s)

texture strength - spatial resolution

Presented at IAMG 2002
Renée Heilbronner (1), K.Gerald van den Boogaart (2), Helmut Schaeben (2)
Comparison of Coarse- and Fine-Grained Quartz Textures Using the Pole Density Index (PDI)

50

to summarize

- what has digital added to 'manual' image analysis?
- what is the relation between Bambi and Godzilla?
- should we worry about grain size?
- why should we visualize?

in any case

Localisation is important! - One (average) number is never sufficient to explain rock behaviour.

The spatial distribution of grains with a given a size distribution is crucial.
Question, for example: Is the size randomly distributed or layered ? i.e., random, clustered or ordered?isotropic or anisotropic?
what image analysis teaches you ...

Little Lady Lovekins and Old Man Muffaroo if you think you know what it is - ... it may be different

Verbeek was of Dutch descent, but born in Nagasaki, Japan in 1867. His father, Guido Verbeck was a missionary for the Reformed Church in America, and later a head of the Tokyo Imperial University. Gustave spent his childhood in Japan, moved to Paris for art school, and eventually to the United States in 1900 for work as an illustrator and cartoonist for Harper's Magazine, The Saturday Evening Post, and The New York Herald. The latter was where The Upside-Downs of Little Lady Lovekins and Old Man Muffaroo premiered on May 25th of 1902.

René Magritte: La trahison des images Image \neq object shown on it

René François Ghislain Magritte (21 November 1898-15 August 1967) was a Belgian surrealist artist.
La Trahison des Images is a 1929 painting by Magritte who painted it when he was 30 years old. It is on display at the Los Angeles County Museum of Art.
"The famous pipe. How people reproached me for it! And yet, could you stuff my pipe? No, it's just a representation, is it not? So if I had written on my picture "This is a pipe", I'd have been lying!"
(René Magritte)

.. so why use image analysis ?
because it makes you ...
... look at your data
... play with your data
you may even solve some problems ...
but most importantly
... image analysis makes you ask questions

... image analysis has let me meet a lot of nice people, who have asked a lot of very intersting questions therefore ...
... thanks go to all participants of all my workshops without whom this award would not have been possible

... thanks go to all participants of all my workshops without whom this award would not have been possible

