DRT 2022 Catania,

July 5-7, 2015

from c-axis to grainsize – my last 50 years of image analysis

renee.heilbronner@unibas.ch

"The Deformation of Mountains Must Indeed Be Examined With the Microscope"

this talk will be about ...

grain size **C-axis** guartz <0001> 40% -1-weight(%) -2-vol%(D) 30% - 3-vol%meas 4-v(D)(%) 20% 10% 1 10 20% 15%

... and the use of image analysis

decades ago – before microstructure and texture analysis went digital

when I was young ...

my view of geology

my start in geology

stereology and point counting or how to go from 2D to 3D

find volume density:

Achille Ernest Oscar Joseph Delesse (1817-1881)

VV = AA

August Karl Rosiwal (1860-1923)

 $V_V = A_A = L_L$

Andrei Aleksandrovich Glagolev (1894-1969)

 $V_V = A_A = L_L = P_P$

Stereology for Statisticians

which is all about probabilities ...

I. Newton

Comte de Buffon "Mémoire sur le jeu du franc-carreau"

Ce premier les al definie du averait, Que les Largueirs en multiple au certains, Poury lostres amendant leur multir: Conne l'expentierlemente opailler, et

Blaise Pascal

Laplace

A.-L. Cauchy

John Ramsay: R_f / ϕ or how to measure strain

Bruno Sander: AVA*) ...

... or how to map c-axis orientations

PLATE II.b. Quartzite, Rensenspitze, Bozen; section \perp r *a*; 1629 quartz-axes; \times 90; A.V.A. (Ramsauer)

*) Achsenverteilungsanalyse

PLATE III.b. Quartzite, Vikarspitze, Innsbruck; section $\perp b$; 1484 quartz-axes; $\times 25$; A.V.A. (Ramsauer)

early 'digital image analysis' (vector graphics)

manual digitisation

boundaries on tablet

polygonal outline (polyline) defined by:

putting the curve on the grid

... etc. ...

"Houston – we have a problem ...

small data sets – huge computers ...

from Rf / ϕ ... when grains were elliptical

CTI 600°C

1

0

30

60 90 120 150 180 ()

30

60

90 120 150 180 🛈

90

60

120 150 180 🛈

... to SURFOR ... when outlines counted

strain – no strain ? ... "fact or fiction ?"

3 the beginning of digital image analysis (raster graphics)

time moves on ...

Wayne Rasband

types of image analysis

segments

best-fit ellipse outlines

mathematical objects

pixels

image processing vs. image analysis

image processing

some heavy duty image processing

from AVA to CIP

MacCIP (Pascal)

CIP (Fortran)

PrinCIPia / Image SXM

CIP versus AVA

one grain – one c-axis orientation

procedure: first segment then color-code

one pixel – one c-axis orientation

procedure: first color-code then segment

3D grain size – an ongoing project

short intro: the tomato salad problem

the effect of using 3D vs. 2D means

STRIPSTAR

calculates the mode of the volume weighted 3D diameters

... have a look

5 image analysis today ... by way of an example

looking at deformation experiments ...

Heilbronner, R. and Tullis, J. (2002). Geol. Soc. Lond., Spec. Publ.

shearing in dislocation creep regimes 1, 2, and 3 ... and annealing

... of Black Hills Quartzite (BHQ)

shearing in regime 3 only to high strains

in the meantime, CIP meets EBSD ...

CIP images from EBSD data

comparing CIP and EBSD

regime I (w1092) - shearing

CIP

EBSD

optical microscopy in the SEM

regime I (w1092) - shearing

CIP

Positive CLUT

BHQ revisited

true or false ?

"... the recrystallized grain size of the rhomb domain is approximately 12µm and that of the prism domain is approximately 19µm, corresponding to shear stresses of 93 and 64 MPa, respectively."

Heilbronner, R. and Tullis, J. (2006) JGR

Heilbronner, R. & Kilian, R. (2017), Solid Earth.

CIP segmentation by shape

EBSD segmentation by texture

grain size as f(curve fit)

regime I regime 2 regime 3

(using normal curve fits)

the infamous 'correction factor'

3D mode : 2D mean 1.8 1.6 1.4 1.2 1.0

put the numbers back into the picture

grain size mapping

if you are allergic to 3D grain size ...

[K] d_{equ corr}

texture dependent grain size

area weighting of 2D

the quartz piezometer(s)

texture domains

piezometer different for shearing vs. axial ?
- unresolved

7 about texture

texture strength – spatial resolution

texture strength – grain size

texture mapping

to summarize

what has digital added to 'manual' image analysis ?
what is the relation between Bambi and Godzilla ?
should we worry about grain size ?
why should we visualize ?

... in any case

what image analysis teaches you ...

what image analysis teaches you ...

what image analysis teaches you ...

... so why use image analysis ?

because it makes you look at your data ... play with your data

you may even solve some problems ...

but most importantly image analysis makes you ask questions

and finally, ...

... image analysis has let me meet a lot of nice people, who have asked a lot of very intersting questions therefore ...

... thanks go to all participants of all my workshops – without whom this award would not have been possible

... thanks go to all participants of all my workshops – without whom this award would not have been possible