from c-axis to grainsize - my last 50 years of image analysis

renee.heilbronner@unibas.ch

"The Deformation of
Mountains Must Indeed Be Examined With the Microscope"

this talk will be about ...

c-axis
quartz <000|>

grain size

... and the use of image analysis

I
 decades ago -
 before microstructure and
 texture analysis went digital

when I was young ...

my view of geology

my start in geology

stereology and point counting ... or how to go from 2D to 3D

find volume density:
Achille Ernest Oscar Joseph Delesse (1817-I88I)

$$
\mathrm{VV}=\mathrm{AA}
$$

August Karl Rosiwal (1860-1923)

$$
V V=A A=L L
$$

Andrei Aleksandrovich Glagolev (1894-I969)

$$
V V=A A=L L=P P
$$

Stereology for Statisticians

which is all about probabilities ...

Comte de Buffon

"Mémoire sur le jeu du franc-carreau"

John Ramsay: $\mathrm{R}_{\mathrm{f}} / \varphi$...

... or how to measure strain

Bruno Sander: AVA*)
 ... or how to map c-axis orientations

Plate III.b. Quartzite, Vikarspitze, Innsbruck; section $\perp b$; 1484 quartz-axes; $\times 25$; A.V.A. (Ramsauer)

2
 early 'digital image analysis' (vector graphics)

manual digitisation

boundaries on tablet

polygonal outline (polyline) defined by:

	$\#$	\mathbf{x}	\mathbf{y}
	1.	457	11
	2.	446	16
	3.	432	36
verteces	4.	427	49
of polyline	5.	443	66
	6.	484	77
	7.	503	68
	8.	470	15
	9.	457	11
delimiter \longrightarrow	10.	9999	9999

putting the curve on the grid

polygonal outline (polyline) defined by:

try again

"Houston - we have a problem

$\Delta L_{x}=20 \mathrm{px}$

ΔL_{y}	tan:	angle:
4	$4 / 20$	11.3°
3	$3 / 20$	8.5°
2	$2 / 20$	5.7°
1	$1 / 20$	2.9°
0	0	0°

"Stand by, I3,

.... we are looking at it"

small data sets - huge computers

from $\operatorname{Rf} / \varphi$... when grains were elliptical

CT3 $700^{\circ} \mathrm{C}$

CT2 $800^{\circ} \mathrm{C}$

closed outlines only
$700^{\circ} \mathrm{C}$ - high strain

length of surface projection

$$
\begin{aligned}
\mathrm{b} / \mathrm{a} & =0.146 \\
\mathrm{R}_{\mathrm{s}} & =6.85 \\
\varphi & =18^{\circ}
\end{aligned}
$$

surface ODF

strain ellipse

strain - no strain ?

"fact or fiction ?"

3

the beginning of digital image analysis (raster graphics)

time moves on

Wayne Rasband

NIH Image

Steve Barrett

types of image analysis

segments

best-fit ellipse outlines

mathematical objects

image processing vs. image analysis

image processing

image analysis

some heavy duty image processing

COI image: 2 channels (azi/inc)
RGB color image: 3 channels

from AVA to CIP

CIP versus AVA

one grain - one c-axis orientation
procedure:
first segment then color-code

one pixel - one c-axis orientation
procedure:
first color-code then segment

4
 3D grain size
 - an ongoing project

short intro: the tomato salad problem

the effect of using 3D vs. 2D means

STRIPSTAR

calculates the mode of the volume weighted 3D diameters
vol\%

frequency

... have a look

5 image analysis today ... by way of an example

looking at deformation experiments

Heilbronner, R. and Tullis, J. (2002). Geol. Soc. Lond., Spec. Publ.

shearing in
dislocation creep
regimes I, 2, and 3
$\ldots .$. and annealing

	mismem	\%				
	3	\int	mode D ($\mu \mathrm{m}$)		bulk $\mathrm{CPO}_{\text {max }}$	
			reg.l	~7	reg.l	3.8
	,	\%	reg. 2	~8	reg. 2	10.9
\%im	${ }^{6}$	晹	reg. 3	~ 14	reg. 3	10.1

... of Black Hills Quartzite (BHQ)

circular polarization

Heilbronner, R. and Tullis, J. (2006) JGR
volume (\%)

mode $D(\mu \mathrm{~m})$	
undef.	99 ± 12
reg. 3	15 ± 10

in the meantime, CIP meets EBSD ...

CIP images from EBSD data

comparing CIP and EBSD

regime I (wl092) - shearing

CIP
EBSD

optical microscopy in the SEM

regime I (wl092) - shearing

CIP
EBSD

Positive CLUT

BHQ revisited

true or false ?

"... the recrystallized grain size of the rhomb domain is approximately $12 \mu \mathrm{~m}$ and that of the prism domain is approximately $19 \mu \mathrm{~m}$, corresponding to shear stresses of 93 and 64 MPa, respectively."

Heilbronner, R. and Tullis, J. (2006) JGR

Heilbronner, R. \& Kilian, R. (20I7), Solid Earth.

CIP segmentation by shape

EBSD segmentation by texture

EBSD to CIP outlines >75\%

EBSD without grain completion

艺
 $\mathrm{CIP} \approx \mathrm{EBSD}$

EBSD with grain completion

grain size as f(curve fit)

regime 1 regime 2 regime 3

(using normal curve fits)

the infamous 'correction factor'

put the numbers back into the picture

 image processing
image analysis

property mapping

grain size mapping

area equivalent diameter

$\underline{\square}$
regime 3 w935

if you are allergic to 3D grain size

Load Macros...	\&9
grain size map by area	$[\mathrm{A}]$
grain size map by radius	$[\mathrm{B}]$
grain size map by long diameter	$[\mathrm{C}]$
grain shape map - axial ratio	$[\mathrm{D}]$
grain shape map - aspect ratio	$[\mathrm{E}]$
grain shape map - shape factor 1	$[\mathrm{~F}]$
grain shape map - shape factor 2	$[\mathrm{G}]$
grain orientation map	$[\mathrm{H}]$
grain size map by requ corr	$[J]$
grain size map by d equ corr	$[\mathrm{K}]$

[K] dequ corr

[J] $\mathrm{requ}_{\text {corr }}=$ corrected

[B] $\mathrm{r}_{\text {equ }} \neq$ corrected

texture dependent grain size

area weighting of 2D

$$
\begin{aligned}
& \text { 2D }
\end{aligned}
$$

the quartz piezometer(s)

piezometer different for shearing vs. axial ?

- unresolved
texture domains

piezometer different for different domains?
- unresolved

7

about texture

texture strength - spatial resolution

texture strength - grain size

synthetic random texture
64 by 64 px $=4096$ 'grains'

texture mapping

so ...?

to summarize

- what has digital added to manual' image analysis?
- what is the relation between Bambi and Godzilla ?
- should we worry about grain size?
- why should we visualize?

... "you can observe a lot by watching"

1010 010

what image analysis teaches you ...

what image analysis teaches you ...

what image analysis teaches you ...

... so why use image analysis ?
because it makes you ...
... look at your data
... play with your data
you may even solve some problems ...
but most importantly ...
... image analysis makes you ask questions

and finally, ...

... image analysis has let me meet a lot of nice people, who have asked a lot of very intersting questions therefore ...
... thanks go to all participants of all my workshops without whom this award would not have been possible

... thanks go to all participants of all my workshops without whom this award would not have been possible

