TSK19 HALIE Workshop 2

Tuesday, March, 7, 2022

Selected topics in image analysis of deformed rocks

Shape analysis
(I)

Grain size distributions Spatial distributions
renee.heilbronner@unibas.ch

Schedule

Renée - Lectures
10:00-10:30 shape analysis
10:30-11:00 discussion \& break
II:00-1I:30 grainsize
II:30-12:00 discussion \& break
12:00-12:30 phase distributions \& correlations
12:30-14:00 discussion \& lunch
Rüdiger - Lab
14:00-I5:30 using Fiji / imageJ
15:30-16:00 break
16:00-17:00 playtime (with your own data)
basics

types of image analysis

 - direct / no segmentation - analysis of bitmaps: segments, objects, outlines
types of image analysis

image analysis step by step

image acquisition

pre-processing

segmentation

feature extraction

data analysis

image - segments - ellipses - outlines

unsegmented image
gray values $Z(X, Y)$ histogram $h(Z)$

segmented bitmap

segments:
connected pixels
boundary pixels

best fit shapes (ellipses)
center, axes, orientation
$X_{c} Y_{c}, a, b, \varphi$

polygonal outlines (polylines)
line segments
connecting verteces
$\left(\mathrm{x}_{1}, \mathrm{y}_{\mathrm{l}}\right) \ldots\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right)$

why image analysis ... and why not

 I use image analysis as a research tool turn the information contained in an image into numbers ("ein Bild sagt mehr als tausend Worte")2
formulate the question for which you want the answer
3
before segmentation decide what is the aim: shape analysis? use high resolution images - small no of segments grain size analysis? use large number of segments
and please remember: while art is often involved in image analysis, ... image analysis is not a decorative art

possible questions

composition of ooides ? spacing ? packing density ? grain size ? shape preferred orientation? detailed shape of ooides (indentations)?

2 nothing on segmentation

the art of segmentation

how to segment an image...
... in five easy steps

segments:
connected pixels

segments (or regions)

- neighbouring segments should have signicantly different values with respect to the characteristic on which they are uniform
segment $=$ black $=$
particle

segment $=$ black $=$ matrix

segment $=$ black $=$ grain

segment $=$ black $=$ grain boundary

segment boundary

segment boundary

segment boundary

segment boundary

segment vs. grain boundaries

phase map

grain map

calcite + anhydrite

segmentation techniques

pixel based (grey value based)

- thresholding, grey level slicing, histogram based

region based
- statistical region growing, seeded, unseeded

edge based

- Sobel filter, Laplace filter

... and many others ...

easy segmentation on scanner

incident light

3

'direct' shape... ...later

analysis of image 'as-is'

see (3) phase distributions

4
 shape of segments

analysis of segments

using segments:

- size
- re-directed sampling
- shape factor

segment - region of connected pixels

$$
\text { Area }=\text { number of pixels }
$$

Perimeter from boundary pixels		
number of boundary pixels:	88 px	88 px
length of perimeter:	69.11 px	88 px

area equivalent circle
$r_{\text {equ }}$ (area equivalent radius) $\quad=\sqrt{ }(\mathrm{A} / \pi)$
$d_{\text {equ }}$ (area equivalent diameter) $=2 \cdot \sqrt{ }(\mathrm{~A} / \pi)$
$P_{\text {equ }}$ (area equivalent perimeter) $=2 \cdot \sqrt{ }(\pi \cdot A)$
perimeter equivalent circle
$A_{\text {equ }}$ (perimeter equivalent area) $\quad=P^{2} / 4 \pi$

size of segments

size distribution by area

size distribution by diameter of area equivalent circle

brightness - roughness

re-direct analysis from bitmap to original

shape factor

Perimeter vs. equivalent diameter

5
 shape via fit ellipses

types of image analysis

using best fit ellipses: - aspect ratio, axial ratio
 - orientation
 - Rf-Phi

analysis using best fit ellipse

ellipse.p (NIH Image I.62) principal component analysis

Best-fitting ellipse routines:
Bob Rodieck
Dep. of Ophthalmology
Univ. of Washington

	best fit ellipse	units: (real / real)
Majr = a	long diameter of best fit ellipse $=2 \mathrm{a}$	
	un-scaled / scaled	$\mathrm{px} / \mathrm{mm}, \mu \mathrm{m}$, etc.
Minr = b	short diameter of best fit ellipse $=2 \mathrm{~b}$	
	un-scaled / scaled	$\mathrm{px} / \mathrm{mm}, \mu \mathrm{m}$, etc.
Angl = φ	orientation of long diameter	${ }^{\circ} \mathrm{CCLW}$ from pos. x -axis
X	X coordinate of center of gravity	
	un-scaled / scaled	$\mathrm{px} / \mathrm{mm}, \mu \mathrm{m}$, etc.
Y	Y coordinate of center of gravity	
	un-scaled / scaled	$\mathrm{px} / \mathrm{mm}, \mu \mathrm{m}$, etc.

measures (a, b, φ) are usually distributed

axial ratio

Truzzo granitoid

quartz

plagioclase

best fit ellipse: short diameter as f (long diameter) $b=f(a)$, slope $=b / a$

axial ratio

$\square \mathrm{grt} \quad \square \mathrm{wm} \quad \square \mathrm{plg}$
short axis vs. long axis

	grt	wm	pl
average b/a	0.59	0.32	0.49
mean(b) $/$ mean(a)	0.56	0.27	0.45

$\mathrm{R}_{\mathrm{f}} / \varphi$ diagrams

best fit ellipse:
aspect ratio, R_{f}, versus angle of orientation, φ

'the' average axial ratio ...?

best fit ellipse: short diameter as f (long diameter)
$b=f(a)$
slope $=\mathrm{b} / \mathrm{a}$

slope $b(a)=0.634$

$(b / a)=f(s i z e)$

6
 shape of outlines

using outlines:
 - PAROR particle fabrics - SURFOR surface fabrics
 - shape descriptors

analysis of segments

how to measure strain

strain test

if grain boundaries are strain markers
\Rightarrow surface ODF has orthorhombic symmetry

surfer (Jazy surfor)

overall and local surface orientation

bulk orientation of ooides \Rightarrow crossbedding
p.s. contacts

bulk orientation of p.s.contacts \Rightarrow compaction direction

tectonics

quantifying shape:
 - shape factors
 - deltA, deltP (PARIS factor)

shape in relation to circle

shape factors:
SFI perimeter ratio $\mathrm{P} / \mathrm{P}_{\text {equ }}$
SF2 area ratio $4 \pi A / P^{2}$
A measured area of shape
P measured length of outline
$P_{\text {equ }}$ perimeter of area equivalent circle
square:
ellipse:
lobate shape:
angular fragment:
circle: isometric, fully convex, continuously curved isometric ($\mathrm{a} / \mathrm{b}=\mathrm{I} .00$), fully convex, angular elongated (a / b > I.00), fully convex, continuously curved isometric, convex-concave, continuously curved isometric, convex-concave, angular

shape descriptors in ImageJ

a / b
A

$$
\begin{aligned}
& \mathrm{SF}_{2}=\frac{\mathrm{A}}{\mathrm{~A}_{\text {equ }}}=\frac{4 \pi \mathrm{~A}}{\mathrm{P}^{2}} \\
& \mathrm{~b} / \mathrm{a}=\frac{4 \mathrm{~A}}{\pi \cdot \mathrm{a}^{2}}=\frac{\pi \mathrm{ab}}{\pi \cdot \mathrm{a}^{2}}
\end{aligned}
$$

A / Ahull

Edit > Selection > Convex Hull:

"Shape factor I" (w/r to area equivalent circle)
"Aspect ratio"
"Shape factor 2" "Circularity"
"Roundness" "Axial ratio"
"Solidity"(w/r to convex hull)

shape descriptors - shape factors

excess perimeter - area deficiency

excess perimeter (\approx PARIS factor)

shape descriptors - vertex angles

for any polygon: $\quad \Sigma \alpha=360^{\circ}$
positive = closing

Ω (omega) $\quad \Sigma[h(\alpha) \cdot \alpha] \quad$ for $\alpha<0^{\circ}$
extreme values $\quad \alpha_{\text {max }}$ and $\alpha_{\text {min }}$
range of angles $\alpha_{\max }-\alpha_{\text {min }}$

from angular to rounded

cracked

histogram of vertex angles

shape descriptors for test shapes

definition	ImageSXM ishapes	Image							

*) $A(\alpha)$ line projection (surfor)
$B(\alpha)$ area projection (paror)

applications - fault rocks

- crystalline rocks

shape analysis of cracked and gouge

dynamic recrystallization

static annealing

$$
\begin{gathered}
7 \\
\text { visualisation }
\end{gathered}
$$

visualizing results: - property mapping

seeing is believing

cracked material

gouge material

grain shape mapping (shape factor I)

1.0

$P / P_{\text {equ }}$

intersecting properties

1.0

0

shape for $d_{\text {equ }}>9 \mu \mathrm{~m}$

Area: 350943 sq pix Hean: $1.594 \mathrm{~F} /$ Pequ

Area: 343768 sq pix
Hean: $1.364 \mathrm{~F} /$ Pequ

checking 2D grain size

lower σ larger gs BHQ regime 2

BHQ regime 2

shear experiments on Black Hills quartzite

0

visualization from data base

segmented image

neighbor count
ask Rüdiger ...

grain boundary trend

8

software \& support

literature

Heilbronner, R. and Barrett, S. (2014)
Image Analysis in Earth Sciences
Microstructures and Textures of Earth Materials.
Spinger Verlag, Heidelberg

ISBN: 978-3-642-I0342-I (Print)

ISBN: 978-3-642-I0343-8 (Online)

```
\nabla Part I: Looking at Images
    1: Images and Microstructures:
    2: Acquiring Images:
    > 3: Digital Image Processing
    \4: Pre-processing:
\nablaart II: Segmentation: Finding and Defining the Object
    5: Segmentation by Point Operations:
     6: Post-processing
    7: Segmentation by Neighborhood Operations:
    8: Image Analysis:
    9: Test Images:
\nabla Part III: Measuring Size and Volume
    10: Volume Determinations
    11: 2-D Grain Size Distributions:
    12: 3-D Grain Size:
    >13: Fractal Grain Size Distributions:
\nabla Part IV: Quantifying Shape and Orientation
    14: Particle Fabrics
    > 15: Surface Fabrics
    16: Strain Fabrics:
     17: Shape Descriptors:
\nablaPart V: Spatial Relationships
    >18: Spatial Distributions:
    19: Spatial Frequencies
    20: Autocorrelation Function:
Part VI: Orientation Imaging
```

https://earth.unibas.ch/micro (https://micro.earth.unibas.ch) \rightarrow Textbook \rightarrow download of figures

FREE DOWNLOAD

\rightarrow FIGURES I corr
\rightarrow FIGURES 2
\rightarrow FIGURES 3
\rightarrow FIGURES 4
\rightarrow FIGURES 5
\rightarrow FIGURES 6
\rightarrow FIGURES 7
\rightarrow FIGURES 8
\rightarrow FIGURES 9
\rightarrow FIGURES 10
\rightarrow FIGURES II
\rightarrow FIGURES 12 corr
\rightarrow FIGURES 13 corr
\rightarrow FIGURES 14 corr
\rightarrow FIGURES 15
\rightarrow FIGURES 16
\rightarrow FIGURES 17
\rightarrow FIGURES 18 corr
\rightarrow FIGURES 19 corr
\rightarrow FIGURES 20 corr
\rightarrow FIGURES 21
\rightarrow FIGURES 22 corr
\rightarrow FIGURES 23 corr
'corr' = corrected w / r to printed book

available / recommended programs

Software	what it does	where to get it
ImageJ / Fiji	Image analysis	https://fiji.sc/
Image SXM	Image analysis	https://www.liverpool.ac.uk/~sdb/lmageSXM/
paror (Fortran)	Particle fabric analaysis	https://micro.earth.unibas.ch \rightarrow Software
surfor (Fortran) or Jazy_surfor	Surface fabric analaysis	https://micro.earth.unibas.ch \rightarrow Software
ishapes (Fortran)	Shape descriptors	https://micro.earth.unibas.ch \rightarrow Software
stripstar (Fortran) or Jazy_stripper	2D-3D grainsize analysis	https://micro.earth.unibas.ch \rightarrow Software
PolyLX (python)	Microstructures analysis	https://github.com/ondrolexa/polylx
grain size toolbox (python)	Grain size analyis	https://marcoalopez.github.io/GrainSizeTools/
Matlab	Image processing toolbox	https://mathworks.com

macros - and where to get them

Image SXM
ImageJ / Fiji
Lazies (Renée Heilbronner)
Jazies (Rüdiger Kilian)
Lazy ACF-Tiles.txt
Jazy_ACF.ijm
Lazy Analyze.txt

Lazy macros (SXM macro language) https://micro.earth.unibas.ch \rightarrow Software \rightarrow Macros Jazy macros (imageJ macro language) https://github.com/kilir/Jazy_macros

end

shape

