TSK19 HALLE

(|)

Workshop 2 Tuesday, March, 7, 2022

Selected topics in image analysis of deformed rocks

Shape analysis Grain size distributions Spatial distributions

renee.heilbronner@unibas.ch

Schedule

Renée – Lectures10:00-10:30shape analysis10:30-11:00discussion & break11:00-11:30grainsize11:30-12:00discussion & break12:00-12:30phase distributions & correlations12:30-14:00discussion & lunch

Rüdiger – Lab 14:00-15:30 using Fiji / imageJ 15:30-16:00 break 16:00-17:00 playtime (with your own data)

basics

types of image analysis direct / no segmentation analysis of bitmaps: segments, objects, outlines

types of image analysis

image analysis step by step

image - segments - ellipses - outlines

unsegmented image

gray values Z(X,Y)histogram h(Z)

connected pixels boundary pixels

orientation $X_c Y_c$, a, b, φ connecting verteces $(x_1,y_1) \dots (x_n,y_n)$

why image analysis ... and why not

use image analysis as a research tool turn the information contained in an image into numbers ("ein Bild sagt mehr als tausend Worte")

2

formulate the question for which you want the answer

3

before segmentation decide what is the aim: shape analysis? use high resolution images - small no of segments grain size analysis? use large number of segments

and please remember: while art is often involved in image analysis, ... image analysis is not a decorative art

possible questions

composition of ooides ? spacing ? packing density ? grain size ? shape preferred orientation ? detailed shape of ooides (indentations) ?

2 nothing on segmentation

the art of segmentation

how to segment an image... ... in five easy steps

segmented bitmap

segments: connected pixels

unsegmented image

gray values Z(X,Y)histogram h(Z)

segments (or regions)

• neighbouring segments should have signicantly different values with respect to the characteristic on which they are uniform

segment boundary

segment boundary

segment boundary

segment boundary

segment vs. grain boundaries

phase map

grain map

segmentation techniques

pixel based (grey value based)

 thresholding, grey level slicing, histogram based

region based

 statistical region growing, seeded, unseeded

• Sobel filter, Laplace filter

... and many others ...

easy segmentation on scanner

incident light

3 'direct' shape... ...later

analysis of image 'as-is'

see (3) phase distributions

shape of segments

4

analysis of segments

using segments:

- size
- re-directed sampling
- shape factor

segment - region of connected pixels

Area = number of pixels

Perimeter from boundary pixels	\bigcirc	
number of boundary pixels:	88 рх	88 рх
length of perimeter:	69.11 рх	88 рх

area equivalent circle

r_{equ} (area equivalent radius)
d_{equ} (area equivalent diameter)
P_{equ} (area equivalent perimeter)

 $= \sqrt{(A / \pi)}$ $= 2 \cdot \sqrt{(A / \pi)}$ $= 2 \cdot \sqrt{(\pi \cdot A)}$

perimeter equivalent circle A_{equ} (perimeter equivalent area)

 $= P^2 / 4\pi$

size of segments

brightness - roughness

shape factor

Perimeter vs. equivalent diameter

5 shape via fit ellipses

types of image analysis

using best fit ellipses:

- aspect ratio, axial ratio
- orientation
- Rf-Phi

analysis using best fit ellipse

ellipse.p (NIH Image 1.62) principal component analysis

Best-fitting ellipse routines: Bob Rodieck Dep. of Ophthalmology Univ. of Washington

	best fit ellipse	units: (real / real)
Majr = a	long diameter of best fit ellipse = 2a	
	un-scaled / scaled	px / mm, µm, etc.
Minr = b	short diameter of best fit ellipse = 2b	
	un-scaled / scaled	px / mm, µm, etc.
Angl = φ	orientation of long diameter	° CCLW from pos. x-axis
x	X coordinate of center of gravity	
	un-scaled / scaled	px / mm, µm, etc.
Y	Y coordinate of center of gravity	
	un-scaled / scaled	px / mm, µm, etc.

measures (a, b, φ) are usually distributed

axial ratio

best fit ellipse: short diameter as f(long diameter) b = f(a), slope = b/a

axial ratio

short axis vs. long axis

	grt	wm	pl
average b/a	0.59	0.32	0.49
mean(b) / mean(a)	0.56	0.27	0.45

R_f/ϕ diagrams

best fit ellipse: aspect ratio, R_f , versus angle of orientation, ϕ

'the' average axial ratio ... ?

shape of outlines

using outlines: - PAROR particle fabrics

- SURFOR surface fabrics
- shape descriptors

analysis of segments

how to measure strain

strain test

 \Rightarrow surface ODF has orthorhombic symmetry

surfer (Jazy surfor)

15

16

17

18

19

20

21

70.000

75.000

80.000

85.000

90.000

95.000

100.000

0.435

0.454

0.486

0.525

0.570

0.618

0.669

0.337

0.000

0.353

0.000

0.285

0.000

0.151

0.337

0.000

0.353

0.000

0.285

0.000

0.151

1.265 0.145

1.440

1.614

1.702

1.353 0.112 0.420

0.107

1.527 0.140 0.480

0.087

1.789 0.093 0.553

0.083 0.528

0.420

0.480

0.528

-0.097

-0.097

-0.043

-0.043

0.009

0.009

0.042

am projection curve A(α)

overall and local surface orientation

bulk orientation of ooides \Rightarrow crossbedding

bulk orientation of p.s.contacts \Rightarrow compaction direction

tectonics

quantifying shape:

- shape factors
- deltA, deltP (PARIS factor)

shape in relation to circle

shape factors:

- SFI perimeter ratio P / Pequ
- SF2 area ratio $4\pi A$ / P^2
- A measured area of shape
- P measured length of outline
- $\begin{array}{ll} P_{equ} & perimeter \ of \ area \ equivalent \\ circle \end{array}$

circle: square: ellipse: lobate shape: angular fragment: isometric, fully convex, continuously curved isometric (a / b = 1.00), fully convex, angular elongated (a / b > 1.00), fully convex, continuously curved isometric, convex-concave, continuously curved isometric, convex-concave, angular

shape descriptors in ImageJ

Edit > Selection > Convex Hull:

shape descriptors - shape factors

1) average relative indented surface, Panozzo & Hürlimann 1983

excess perimeter - area deficiency

excess perimeter (\approx PARIS factor)

shape descriptors - vertex angles

for any polygon:

 $\sum \alpha = 360^{\circ}$ positive = closing

 α_{max} and α_{min}

 $\alpha_{max} - \alpha_{min}$

concave $\alpha < 0^{\circ}$

 $\sum [h(\alpha) \cdot \alpha]$ for $\alpha < 0^{\circ}$ Ω (omega)

extreme values range of angles

from angular to rounded

1/

 \hat{D}

histogram of vertex angles

vertex angles along outline

shape descriptors for test shapes

definition	ImageSXM ishapes	ImageJ					6	C	4
b/a	axial ratio	Roundness	1.00	0.50	1.00	0.94	0.96	0.94	0.89
a/b	aspect ratio	Aspect ratio	1.00	2.00	1.00	1.06	1.04	1.06	1.12
$B(\alpha)_{max}/B(\alpha)_{min}^{*)}$	hull ratio	(Feret/MinFeret)	1.00	2.00	1.41	1.14	1.14	1.14	1.15
P/P _{equ}	shape factor I	(Circularity) ⁻²	1.00	1.12	1.13	1.35	1.38	1.40	2.25
A/A _{equ}	shape factor 2	Circularity	1.00	0.80	0.79	0.55	0.53	0.51	0.20
$(A(\alpha)-B(\alpha))/A(\alpha)^{*)}$ =2 · (A _{hull} -A)/A _{hull}	PARIS factor (%)		0	0	0	43	40	48	136
(P-P _{hull})/P	deltP (%)		0	0	0	18	17	19	41
(A _{hull} -A)/A	deltA (%)	((A/Solidity)-A)/A	0	0	0	2	11	14	54
A/A _{hull}		Solidity	1.00	1.00	1.00	0.97	0.89	0.87	0.64

*) $A(\alpha)$ line projection (surfor) $B(\alpha)$ area projection (paror)

applications fault rocks

- crystalline rocks

shape analysis of cracked and gouge

dynamic recrystallization

static annealing

visualisation

visualizing results:property mapping

seeing is believing

cracked material

gouge material

grain shape mapping (shape factor 1)

intersecting properties

Area: 350943 sq pix Hean: 1.594 P/Pequ

Area: 343708 sq pix **Mean:** 1.364 P/Pequ

checking 2D grain size

shear experiments on Black Hills quartzite

0 _____≥25 μm

 $\mathsf{d}_{\mathsf{equ}}$

visualization from data base

segmented image

8 software & support

literature

Heilbronner, R. and Barrett, S. (2014) Image Analysis in Earth Sciences Microstructures and Textures of Earth Materials. Spinger Verlag, Heidelberg

ISBN: 978-3-642-10342-1 (Print)

Part I: Looking at Images 1: Images and Microstructures: 2: Acquiring Images: 3: Digital Image Processing: 4: Pre-processing: Part II: Segmentation: Finding and Defining the Object 5: Segmentation by Point Operations: 6: Post-processing: > 7: Segmentation by Neighborhood Operations: 8: Image Analysis: 9: Test Images: Part III: Measuring Size and Volume 10: Volume Determinations: 11: 2-D Grain Size Distributions: ▶ 12: 3-D Grain Size: ▶ 13: Fractal Grain Size Distributions: Part IV: Quantifying Shape and Orientation 14: Particle Fabrics: ▶ 15: Surface Fabrics: ▶ 16: Strain Fabrics: 17: Shape Descriptors: Part V: Spatial Relationships 18: Spatial Distributions: 19: Spatial Frequencies: 20: Autocorrelation Function: Part VI: Orientation Imaging

https://earth.unibas.ch/micro (https://micro.earth.unibas.ch) → Textbook → download of figures

FREE DOWNLOAD
→ FIGURES corr
\rightarrow FIGURES 2
→ FIGURES 3
\rightarrow FIGURES 4
→ FIGURES 5
\rightarrow FIGURES 6
\rightarrow FIGURES 7
→ FIGURES 8
\rightarrow FIGURES 9
→ FIGURES 10
→ FIGURES 11
→ FIGURES 12 corr
→ FIGURES 13 corr
→ FIGURES 14 corr
→ FIGURES 15
→ FIGURES 16
→ FIGURES 17
→ FIGURES 18 corr
→ FIGURES 19 corr
→ FIGURES 20 corr
→ FIGURES 21
→ FIGURES 22 corr
→ FIGURES 23 corr
'corr' = corrected w/r to printed book

ISBN: 978-3-642-10343-8 (Online)

available / recommended programs

Software	what it does	where to get it
ImageJ / Fiji	Image analysis	https://fiji.sc/
Image SXM	Image analysis	https://www.liverpool.ac.uk/~sdb/ImageSXM/
paror (Fortran)	Particle fabric analaysis	https://micro.earth.unibas.ch \rightarrow Software
surfor (Fortran) or Jazy_surfor	Surface fabric analaysis	https://micro.earth.unibas.ch \rightarrow Software
ishapes (Fortran)	Shape descriptors	https://micro.earth.unibas.ch \rightarrow Software
stripstar (Fortran) or Jazy_stripper	2D-3D grainsize analysis	https://micro.earth.unibas.ch \rightarrow Software
PolyLX (python)	Microstructures analysis	https://github.com/ondrolexa/polylx
grain size toolbox (python)	Grain size analyis	https://marcoalopez.github.io/GrainSizeTools/
Matlab	Image processing toolbox	https://mathworks.com

macros - and where to get them

Image SXM	ImageJ / Fiji	
Lazies (Renée Heilbronner)	Jazies (Rüdiger Kilian)	what they do:
Lazy ACF-Tiles.txt	Jazy_ACF.ijm	Tesselation of ACFs in stack with microstructure
Lazy Analyze.txt		Sets options for Analyze: b/a, r, d equ etc.
Lazy CIP-LUTs.txt		Luts for CIP images (orientation images)
Lazy ColorVoronois.txt		Converts Hugo-Ledoux-slices to test fabrics
Lazy Contacts.txt	Jazy_Voronoi.ijm	Calculates contact frequencies (spatial distribution)
Lazy D-map.txt	Jazy_D-mapping.ijm	Maps slope of fractal gsd in bitmaps
Lazy Digitize.txt		Primitive digitizing tool
Lazy EBSD.txt		Converts EBSD map to c-axis orientatio map
Lazy ErodeDilate.txt	Jazy_erodilate.ijm	Structural filtering
Lazy GrainBoundaries.txt	Jazy_boundaries.ijm	Segmentation: pre-, post-process, etc. yields grain map
Lazy GrainMap.txt	Jazy_whatever_map.ijm	Maps properties (size, orientation, etc.) into image
Lazy Lighting.txt	Jazy_background.ijm	Performs background correction
Lazy LUTs.txt	Jazy_LUT.ijm	Macro for LUT manipulation, live segmentation
Lazy MapRedirect.txt		Analysis (Analyze) for bitmap and corresponding grey scale
Lazy Re-Size.txt		Re-sizing of images to desired resolution, width, etc.
	Jazy_surfor.ijm	Surface orientation (= surfor)
	Jazy_stripper.ijm	2D-3D conversion of GSD (= stripstar)
	Jazy_XY_export_header.ijm	Export of particle outlines, raw and smoothed
	Jazy_Env_map.ijm	Shape factors based on convex hull

Lazy macros (SXM macro language) https://micro.earth.unibas.ch → Software → Macros Jazy macros (imageJ macro language) https://github.com/kilir/Jazy_macros

end shape