## TSK19 HALIE Workshop 2

Tuesday, March, 7, 2022


## Selected topics in image analysis of deformed rocks

Shape analysis

(3)
Grain size distributions Spatial distributions
renee.heilbronner@unibas.ch

## Schedule

Renée - Lectures
10:00-10:30 shape analysis
10:30-11:00 discussion \& break
II:00-11:30 grainsize
II:30-12:00 discussion \& break
12:00-12:30 phase distributions \& correlations
12:30-14:00 discussion \& lunch
Rüdiger - Lab
14:00-I5:30 using Fiji / imageJ
15:30-16:00 break
16:00-17:00 playtime (with your own data)

## spatial distributions

## spatial dispersion



# spatial distributions - random 

- clustered
- ordered ('anti-clustered')


## spatial distributions

spatially dispersed center points


chessboard model


random


clustered

## spatial distribution


random
ordered

highly
clustered

## phases, boundaries and contacts



2 types of grains



2 types of grain boundary surface


3 types of grain contact surface

## conceptual model


boundary surface

- $L_{A} \quad$ For any given grain $A, B$ :

contact surface
$-S_{A A}$
$\longrightarrow S_{B B}$
$=-S_{A B}$ or
- surface fraction ${ }^{2}$ ) of $A, B$
$A \sqrt{A}=p A \cdot p A=p A^{2}$
$B B=p B \cdot p B=(1-p A)^{2}$
I) $=\operatorname{area}($ phase $)$
/ (total cross sectional area)

2) = outline(phase)
/ (total boundary length)
$A B=B A=p A \cdot p B+p B \cdot p A=2 \cdot p A \cdot(I-p A)$

## binomial distribution



# spatial distributions <br> - grains in matrix <br> - grains in crystalline aggregate 

## making random Voronois



5050anti5_z5.tif


5050anti5Prep


5050anti5Prep (R)


5050anti5Prep R3
used random Palette on 5050anti5Prep $R=$ processed $R$ of 5050anti5_z5.tif

## making random Voronois (continued)


threshold 5050anti5Prep instead of using macro $[6], \Rightarrow$ control percentage

## distributions and contact probabilities



area fraction $\mathrm{B}(\%)$


## distributions and contact probabilities


area fraction $B(\%)$

area fraction $\mathrm{B}(\%)$
1009080706050403020100


## isotropic random distribution



## anisotropic random distribution



content $\mathrm{B}(\%)$


content $\mathrm{B}(\%)$


content $\mathrm{B}(\%)$

practical application

## Meluzina eclogite



James Mackenzie

## deriving phase and grain boundaries


grain boundaries


A phase outline


A grains


A grain boundaries


A phase

vertical A gb


A grain outlines

horizontal A gb

## distribution of garnet in eclogite



## garnet in eclogite



## garnet in eclogite



in terms of volume proportions

AB ~random - clustered
AA anticlustered
BB clustered

in terms of surface proportions
$A B$ random
AA random
BB random

## random - clustered - ordered?



$500 \mu \mathrm{~m}$


## 2

 influence of grainsize
## different grain sizes



| * | each grain $A$ |
| :---: | :---: |
| volB |  |
| volA | $=\mathrm{volB}$ |
| volA* | $=\mathrm{volA}$ |
| nB | $=50$ |
| nA | $=\mathrm{nB}$ |
| $n A^{*}$ | $=4 \cdot \mathrm{nA}$ |
| surfB |  |
| surfA | $=\operatorname{surfB}$ |
| surfA* | $=2 \cdot \mathrm{surf} A$ |


| A | 50 A grains |
| :--- | :--- |
| A* | 200 A grains |


|  | $\#$ | $\%$ | \%* $^{*}$ |
| :--- | :--- | :--- | :--- |
| AB | 100 | 50 | 33.3 |
| BB | 50 | 25 | 16.7 |
| AA | 50 | 25 |  |
| AA $^{*}$ | 150 |  | 50.0 |

note: for $A=1 / 2$ size of $B$
number $\%$ best fit:
phase $=$ random
BB $\quad=$ ordered
$A A^{*} \quad=$ clustered




## 2D grain size of Voronois



A (I29 grains)
mean=30.3, RMS=3I. 4



Asmall ( 278 grains $)$
mean $=21.0, R M S=21.7$
Asmall (278 grains)
mean $=21.0$, RMS $=21.7$


B (I40 grains)
mean=28.9, RMS=29.9
$\operatorname{size} A \approx B$ no. $A \approx B$ no.Asmall $\approx 2 x$


## grain size $A$ < grain size $B$


small phase A obtained by subdividing grains, B phase remains unchanged

## volume \& - surface \% - number \%


grainsize $A=$ grainsize $B$


grainsize $A<$ grainsize $B$ phase A 'recrystallized' in situ

## 3

variations

## Menegon et al. 2013



Fig. 7. (a) Example of phase map used in the analysis of spatial distribution of feldspars in the recrystallized matrix, and bitmaps of the grain- and phase boundaries derived from the map. The arrowhead indicates a K-feldspar grain at a quadruple junction between plagioclase grains. (b) The fraction of grain- and phase boundaries measured in five different phase maps are plotted as circles to evaluate the deviations from randomness. Curves show the theoretical fractions of grain- and phase boundaries as a function of the surface fraction of K-feldspar expected for a random distribution in a two-phase mixture (c) Autocorrelation function (ACF) calculated for the plagioclase - K-feldspar phase boundaries. The ACF is shaded at $10 \%$ multiples of the ACF max (located in the centre). For the sake of clarity, the ACF is scaled such that the $10 \%$ contour touches the superposed reference circle. The black circle indicates the highest correlation length at $12^{\circ}$ (measured anticlockwise) from the trace of the mylonitic foliation (E-W).

## The microstructure of recrystallized feldspars is characterized by the predominance of phase boundaries over grain boundaries

## Kilian et al. 201I


mean grain size
Fig. 15. Phase distribution and grain size evolution. (a) Phase map of quartz (black), plagioclase (dark gray), K-feldspar (light grey) and mica (white). The map shows a quartz aggregate in the transition between the mylonite and the ultramylonite with different stages of disintegration. (b) Rpg (ratio of grain boundary/phase boundary area) versus the mean grain size in 6 different, laterally disintegrating aggregates. Symbols correspond to individual, homogenous aggregates. (c) Relationship between the mean quartz grain size in a layer and the relative quartz volume fraction. The relative quartz volume fraction in a layer decreases with increasing disintegration, as grains are separated by K-feldspar. In layers with a higher grain separation the mean grain size is smaller. (d) Schematic model of Rpg - grain size evolution. Black squares are separated from another by grain boundaries (white) and from the matrix by phase boundaries (dark grey) (e) Example of an analyzed area. The evaluation of Rpg and the grain size would correspond to a single point in the diagram b).
practical application

## dislocation creep vs. diffusion creep



Gas medium High pressure Torsion apparatus (UMN)

in olivine:
MeO dissolves at maximum $\sigma \mathrm{I}$.
Reaction ol $\rightarrow$ opx
in orthopyroxene:
MeO diffuses to tension $\sigma 3$.
Reaction opx $\rightarrow$ ol
70\% iron-rich olivine 30\% orthopyroxene hotpressed @l200 ${ }^{\circ} \mathrm{C}$ $\mathrm{d} \sim 15 \mu \mathrm{~m}$

$\mathrm{p}_{\mathrm{c}}=300 \mathrm{MPa}$
$\mathrm{T}=1200^{\circ} \mathrm{C}$


$\mathrm{r} 1: \mathrm{Me}_{2} \mathrm{SiO}_{4}-\mathrm{MeO} \rightarrow \mathrm{MeSiO}_{3}$
(ol) (opx)

- MeO
$\rightarrow$ diffusion
pass
r2: $\mathrm{MeSiO}_{3}+\mathrm{MeO} \rightarrow \mathrm{Me}_{2} \mathrm{SiO}_{4}$
(opx)
(ol)


## motivation

$$
\dot{\varepsilon}=A \cdot \Delta \sigma^{n} \cdot \exp (-Q / R T)
$$



JOURNAL OF GEOPHYSICAL RESEARCH
Solid Earth


Research Article
Rheological weakening of olivine + orthopyroxene aggregates due to phase mixing, Part 1: Mechanical behavior Miki Tasaka $\square$, Mark E. Zimmerman, David L. Kohlstedt

Accepted manuscript online: 8 September 2017 Full publication history DOI: 10.1002/2017JB014333 View/save citation

Tasaka et al. (JGR, 20I7)
dislocation creep ?


phase mixing ?

diffusion creep ?


## which spatial distributions do we expect?


diffusion creep




$\longleftarrow$ \% olivine $\qquad$

## and which spatial distributions do we get?



994 dislocation creep

$\longleftarrow$ \% olivine $\qquad$ $\longleftarrow$ \% olivine


## even the starting material is ordered !!



JOURNAL OF GEOPHYSICAL RESEARCH
Solid Earth


Research Article
Rheological weakening of olivine + orthopyroxene aggregates due to phase mixing, Part2: Microstructural development
Miki Tasaka $\square$, Mark E. Zimmerman, David L. Kohlstedt, Holger Stünitz,
Renée Heilbronner
Accepted manuscript online: 8 September 2017 Full publication history
DOI: 10.1002/2017JB014311 View/save citation
Cited by (CrossRef): 0 articles \&f Check for updates Citation tools
Tasaka et al. (JGR, 2017)


## which spatial distributions do we really get?



994 dislocation creep


« \% olivine $\qquad$


1024 diffusion creep

$\longleftarrow$ \% olivine $\qquad$

plotted against surface fraction !

## also, grain size distributions





## means... and modes


modne



## grain size of ol and opx


olivine

ortho-pyroxene 0
$20 \mu \mathrm{~m}$
d equ

## 3

image statistics

## analysis of image 'as-is'


(no segmentation)


# Fourier transforms - ID / 2D FFT <br> - diffraction patterns 

## profiles $\rightarrow$ ID FFT $\rightarrow$ ACF



Fourier transform (FFT)

autocorrelation (ACF)


## 2D FFT and ACF


high resolution TEM image of chlorite
courtesy Andreas Kronenberg
ACF

## FFT - diffraction patterns



## FFT - low angle boundary



$$
\begin{gathered}
4 \\
\text { autocorrelation }
\end{gathered}
$$

# autocorrelation 

- shape
- strain
- grain size
- spatial distribution


## density slicing in orientation space



## ACF - grain shape as $f(C P O)$



## ACF - shape of texture domains



## $\mathrm{ACF} \rightarrow$ anisotropy/orientation $\rightarrow$ strain



## centerpoint distribution


ooides bitmap

shape of particles

matrix compaction

plot of centerpoints


ACF

'halo' = anticorrelation of centerpoints ( $\rightarrow$ Fry plot)

## end

spatial

